
HDL Verifier™
Reference

R2020a

How to Contact MathWorks

Latest news: www.mathworks.com

Sales and services: www.mathworks.com/sales_and_services

User community: www.mathworks.com/matlabcentral

Technical support: www.mathworks.com/support/contact_us

Phone: 508-647-7000

The MathWorks, Inc.
1 Apple Hill Drive
Natick, MA 01760-2098

HDL Verifier™ Reference
© COPYRIGHT 2003–2020 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used or copied
only under the terms of the license agreement. No part of this manual may be photocopied or reproduced in any form
without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by, for, or through
the federal government of the United States. By accepting delivery of the Program or Documentation, the government
hereby agrees that this software or documentation qualifies as commercial computer software or commercial computer
software documentation as such terms are used or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014.
Accordingly, the terms and conditions of this Agreement and only those rights specified in this Agreement, shall pertain
to and govern the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government) and shall
supersede any conflicting contractual terms or conditions. If this License fails to meet the government's needs or is
inconsistent in any respect with federal procurement law, the government agrees to return the Program and
Documentation, unused, to The MathWorks, Inc.

Trademarks
MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand names may be
trademarks or registered trademarks of their respective holders.
Patents
MathWorks products are protected by one or more U.S. patents. Please see www.mathworks.com/patents for
more information.

https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
https://www.mathworks.com/trademarks
https://www.mathworks.com/patents

Revision History
August 2003 Online only New for Version 1 (Release 13SP1)
February 2004 Online only Revised for Version 1.1 (Release 13SP1)
June 2004 Online only Revised for Version 1.1.1 (Release 14)
October 2004 Online only Revised for Version 1.2 (Release 14SP1)
December 2004 Online only Revised for Version 1.3 (Release 14SP1+)
March 2005 Online only Revised for Version 1.3.1 (Release 14SP2)
September 2005 Online only Revised for Version 1.4 (Release 14SP3)
March 2006 Online only Revised for Version 2.0 (Release 2006a)
September 2006 Online only Revised for Version 2.1 (Release 2006b)
March 2007 Online only Revised for Version 2.2 (Release 2007a)
September 2007 Online only Revised for Version 2.3 (Release 2007b)
March 2008 Online only Revised for Version 2.4 (Release 2008a)
October 2008 Online only Revised for Version 2.5 (Release 2008b)
March 2009 Online only Revised for Version 2.6 (Release 2009a)
September 2009 Online only Revised for Version 3.0 (Release 2009b)
March 2010 Online only Revised for Version 3.1 (Release 2010a)
September 2010 Online only Revised for Version 3.2 (Release 2010b)
April 2011 Online only Revised for Version 3.3 (Release 2011a)
September 2011 Online only Revised for Version 3.4 (Release 2011b)
March 2012 Online only Revised for Version 4.0 (Release 2012a)
September 2012 Online only Revised for Version 4.1 (Release 2012b)
March 2013 Online only Revised for Version 4.2 (Release 2013a)
September 2013 Online only Revised for Version 4.3 (Release 2013b)
March 2014 Online only Revised for Version 4.4 (Release 2014a)
October 2014 Online only Revised for Version 4.5 (Release 2014b)
March 2015 Online only Revised for Version 4.6 (Release 2015a)
September 2015 Online only Revised for Version 4.7 (Release 2015b)
March 2016 Online only Revised for Version 5.0 (Release 2016a)
September 2016 Online only Revised for Version 5.1 (Release 2016b)
March 2017 Online only Revised for Version 5.2 (Release 2017a)
September 2017 Online only Revised for Version 5.3 (Release 2017b)
March 2018 Online only Revised for Version 5.4 (Release 2018a)
September 2018 Online only Revised for Version 5.5 (Release 2018b)
March 2019 Online only Revised for Version 5.6 (Release 2019a)
September 2019 Online only Revised for Version 6.0 (Release 2019b)
March 2020 Online only Revised for Version 6.1 (Release 2020a)

Blocks
1

System Objects
2

Functions
3

v

Contents

Blocks

1

Assertion
Generate SystemVerilog assertions from Simulink assertion
Library: HDL Verifier / For Use with DPI-C SystemVerilog

Description
The Assertion block asserts that its input signal is nonzero. If its input is zero, the block halts the
simulation by default and displays an error message. When you generate a DPI-C SystemVerilog
component - the block creates an immediate SystemVerilog assertion. Using the block parameters,
you can:

• Enable or disable the assertion.
• Specify a MATLAB® expression for Simulink® to evaluate when the assertion fails.
• Select for Simulink to either stop simulation or continue but display a warning when assertion

fails.

Use the DPI-C parameters to control runtime options:

• Specify the severity of the generated assertion.
• Specify a custom message or action when the assertion fails.

Ports
Input

Port_1 — Signal to check for nonzero value
scalar | vector | matrix

The Assertion block accepts input signals of any dimensions and numeric data type that Simulink
supports.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 | Boolean | fixed
point

Parameters
Enable assertion — Enable or disable assertion
on (default) | off

Selecting this check box enables the block to display a simulation warning or error. It also enables the
block to create a SystemVerilog assertion in your generated code. Clearing this check box disables
the assertion in simulation, and it does not generate a SystemVerilog assertion.

1 Blocks

1-2

Simulation callback when assertion fails — Expression to evaluate when assertion
fails
MATLAB expression

Specify a MATLAB expression for Simulink to evaluate when the assertion fails. The block ignores
this parameter in the generated DPI-C assertion.

Dependencies

To enable this parameter, select the Enable assertion parameter.

Stop simulation when assertion fails — Stop Simulink simulation when assertion fails
off (default) | on

Selecting this check box causes Simulink to stop the simulation and display an error when the block
input is zero. Clearing this check box enables Simulink to continue the simulation, displaying a
warning when the block input is zero. The block ignores this parameter in the generated DPI-C
assertion.

Dependencies

To enable this parameter, select the Enable assertion parameter.

DPI-C Assertion Options

Use these parameters to control the behavior of a generated DPI-C assertion, in a SystemVerilog
simulation environment. To enable generation of DPI-C assertion, select Enable assertion.

Severity — Severity of assertion failure
error (default) | warning | custom

Select error or warning for the DPI-C assertion to issue a SystemVerilog error or warning message.
Set to custom to execute a custom command.

Dependencies

To enable this parameter, select the Enable assertion parameter.

Assertion fail message — Custom message when assertion fails
no default

Specify a custom SystemVerilog message to be emitted when the SystemVerilog assertion fails. This
feature supports only ASCII characters.
Example: RX fail

Dependencies

To enable this parameter, set Severity to error or warning.

Assertion custom command — Custom command to execute when assertion fails
SystemVerilog command

Specify a custom SystemVerilog command to execute when the assertion fails. You can set this
parameter to be a display statement, command, or script. This feature supports only ASCII characters
Example: $display("RX fail at %0t", $time);

 Assertion

1-3

Dependencies

To enable this parameter, set Severity to custom.

See Also
Topics
“Generate SystemVerilog Assertions from Simulink Test Bench”

Introduced in R2018a

1 Blocks

1-4

FIL Simulation
Simulate HDL code on FPGA hardware from Simulink
Library: Generated

Description
The generated FPGA-in-the-loop (FIL) simulation block is the communication interface between the
FPGA and your Simulink model. It integrates the hardware into the simulation loop and allows it to
participate in simulation as any other block.

You can generate a FIL Simulation block from existing HDL code using the FPGA-in-the-Loop
Wizard, or, generate HDL code and an accompanying FIL Simulation block using HDL Workflow
Advisor. Generating HDL code requires an HDL Coder™ license.

For the generation and simulation workflow, see “Block Generation with the FIL Wizard”. If you
encounter any issues during FIL simulation, refer to “Troubleshooting FIL” for help in diagnosing the
problem.

You can use the FIL Simulation block in models running in Normal, Accelerator, or Rapid Accelerator
simulation modes. The FIL Simulation parameters are not tunable in any of the simulation modes. For
more information about these modes, see “How Acceleration Modes Work” (Simulink).

Ports
The ports of the block correspond to the interface of your HDL design running on your FPGA. You can
configure the data types of the signals that the FIL Simulation block returns to Simulink.

Input

HDL_input_port_name — Signal passed from Simulink to FPGA
scalar | vector

The ports on the block correspond with ports on your HDL design. You can configure the Sample
time and Data type
Data Types: int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 | Boolean | Fixed-
point

Output

HDL_output_port_name — Signal passed from the FPGA to Simulink
scalar | vector

The ports on the block correspond with ports on your HDL design. You can configure the Sample
time and Data type
Data Types: int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 | Boolean | Fixed-
point

 FIL Simulation

1-5

Parameters
The parameters displayed in the Hardware Information section reflect your selections when you
generated the FIL Simulation block from a subsystem. These parameters are informational only.

• Connection: Either Ethernet or PCI Express®. Some boards can use only one connection type or
the other; with other boards, you may have the option of using either connection. You configure
the MAC address and IP address of the board when you generate the block.

• Board: The make and model of FPGA board. For supported boards, see “Supported FPGA Devices
for FPGA Verification”.

• FPGA part: Chip identification number.
• FPGA project file: The location of the FPGA project file generated for your design.

To download the generated FPGA programming file onto the FPGA, set the parameters in FPGA
Programming File. This step is required before you can run a FIL simulation. See “Load
Programming File onto FPGA”.

To configure data rate parameters, set options in the Runtime Options group.

On the Signal Attributes pane, you can configure Sample time and Data type for each output port.
The direction and bit width of the signals, and the sample time and data type of the input ports, are
informational only.

FPGA Programming File

File name — Location of programming file
string

Location of the FPGA programming file generated for your design. To load this design to the FPGA for
simulation, click Load.

Runtime Options

Overclocking factor — FPGA sample rate relative to Simulink clock
1 (default) | integer

Ratio of FPGA clock rate to the Simulink clock rate. The FPGA clock samples inputs to the FPGA this
many times for each Simulink timestep.

Output frame size — Amount of data returned to Simulink
Inherit: auto (default)

Output signals are returned as Output frame size-by-1 column vectors. Increasing the frame size
can speed up your simulation by reducing the communication time between Simulink and the FPGA
board.

Note these limitations on the frame size :

• The input frame size must be an integer multiple of the output frame size.
• The output frame size must be less than the input frame size.
• The input frame size and output frame size cannot vary during simulation.

1 Blocks

1-6

Signal Attributes

Sample Time — Sample time of each port
Inherit: Inherit via internal rule (default)

Explicitly set sample times for the output signals, or use Inherit: Inherit via internal rule.
The internal rule is to set the output sample times to the input base sample time divided by the
scaling factor.

Data type — Data type of each port
fixdt(0,N,0) (default) | data type expression

How Simulink interprets the bits in the output signal from the FPGA. You can explicitly set output
data types, use the default unscaled and unsigned type, or specify Inherit: auto to inherit a data
type from context.

See Also
Topics
“FPGA-in-the-Loop Simulation”
“FPGA-in-the-Loop Simulation Workflows”
“FIL Simulation with HDL Workflow Advisor for Simulink”
“Block Generation with the FIL Wizard”

Introduced in R2012b

 FIL Simulation

1-7

HDL Cosimulation
Cosimulate HDL design by connecting Simulink with HDL simulator
Library: HDL Verifier / For Use with Cadence Incisive

HDL Verifier / For Use with Mentor Graphics ModelSim

Description
The HDL Cosimulation block cosimulates a hardware component by applying input signals to and
reading output signals from an HDL model under simulation in the HDL simulator. You can use this
block to model a source or sink device by configuring the block with input or output ports only.

You can configure these options on the block:

• Mapping of the input and output ports of the block to correspond with signals (including internal
signals) of an HDL module. You must specify a sample time for each output port. You can
optionally specify a data type for each output port.

• Type of communication and communication settings used to exchange data between simulators.
• The timing relationship between units of simulation time in Simulink and the HDL simulator.
• Rising-edge or falling-edge clocks to apply to your model. You can specify the period for each

clock signal.
• Tcl commands to run before and after the simulation.

Compatibility with Simulink Code Generation

• This block participates in HDL code generation with HDL Coder. The coder generates an interface
to your manually written or legacy HDL code. It does not participate in C code generation with
Simulink Coder™.

Ports
The ports shown on the block correspond with signals from your HDL design running in the HDL
simulator. You can add and remove ports, and configure their data types and sample times, by
changing the block parameters. The Ports tab displays the HDL signals that correspond to the ports.
You can add, remove, and change the order of the ports. Use the Auto Fill button to fill the table via

1 Blocks

1-8

a port information request to the HDL simulator. This request returns port names and information
from your HDL design running in the HDL simulator. See “Get Signal Information from HDL
Simulator” for a detailed description of this feature.

All signals that you specify when you configure the HDL Cosimulation block must have read/write
access in the HDL simulator. Refer to the HDL simulator product documentation for details.

When you import VHDL® signals from the HDL simulator, HDL Verifier returns the signal names in all
capitals.

Input

HDL_input_port_name — Signal passed from Simulink to HDL simulator
scalar | vector

The ports on the block correspond with ports on your HDL design. Add or remove ports on the Ports
tab.
Data Types: int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 | Boolean | Fixed-
point

Output

HDL_output_port_name — Signal passed from HDL simulator to Simulink
scalar | vector

The ports on the block correspond with ports on your HDL design. Add or remove ports on the Ports
tab.
Data Types: int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 | Boolean | Fixed-
point

Parameters
Ports

Enable direct feedthrough — Work around algebraic loop warnings
true (default) | false

Eliminates the one output-sample delay difference between the cosimulation and Simulink that occurs
when your model contains purely combinational paths. Clear this check box if the HDL Cosimulation
block is in a feedback loop and generates algebraic loop warnings or errors. When you simulate a
sequential circuit that has a register on the data path, specifying direct feedthrough does not affect
the timing of that data path.

Full HDL Name — Signal path name
string

Specify the signal path name using the HDL simulator path name syntax. For example,
manchester.samp for Incisive®HDL simulators. The signal can be at any level of the HDL design
hierarchy. The HDL Cosimulation block port corresponding to the signal is labeled with this name.

For rules on specifying port and module path names in Simulink, see “Specify HDL Signal/Port and
Module Paths for Cosimulation”.

 HDL Cosimulation

1-9

You can copy signal path names directly from the HDL simulator wave window and paste them into
the Full HDL Name field. Use the Path.Name view and not Db::Path.Name view. After pasting a
signal path name into Full HDL Name, click Apply to complete the paste operation and update the
signal list.

I/O Mode — Port direction
Input | Output

To add a bidirectional port, add the port to the list twice, as both input and output.

Input — HDL signals that Simulink drives. Simulink deposits values on the specified HDL simulator
signal at the specified sample rate.

Note When you define a block input port, make sure that only one source is set up to drive input to
that signal. For example, avoid defining an input port that has multiple instances. If multiple sources
drive input to a single signal, your simulation model produces unexpected results.

Output — HDL signals that Simulink reads. For output signals, you must specify an explicit sample
time. You can also specify the data type, but the width must match the width of the signal in HDL. For
details on specifying a data type, see the Data Type and Fraction Length parameters.

Simulink signals do not have a tristate semantic because there is no 'Z' value. To interface with
bidirectional signals, connect to the input and enable signals of both the output driver and the output
signal of the input driver. This approach leaves the actual tristate buffer in HDL, where resolution
functions can handle interfacing with other tristate buffers.

Sample Time — Time between reading samples on an output port
1 (default) | integer

Time interval between consecutive samples applied to an output port.

Simulink deposits an input port signal on an HDL simulator signal at the specified sample rate.
Conversely, Simulink reads an output port signal from a specified HDL simulator signal at the
specified sample rate.

In general, Simulink handles port sample periods as follows:

• If you connect an input port to a signal that has an explicit sample period, based on forward
propagation, Simulink applies that rate to the port.

• If you connect an input port to a signal that does not have an explicit sample period, Simulink
assigns a sample period that is equal to the least common multiple (LCM) of all identified input
port sample periods in the model.

• After Simulink sets the input port sample periods, it applies user-specified output sample times to
all output ports. You must specify an explicit sample time for each output port.

The exact interpretation of the output port sample time depends on the settings of the Timescales
parameters of the HDL Cosimulation block. See also “Simulation Timescales”.

Dependencies

To enable this parameter, set I/O Mode to Output.

1 Blocks

1-10

Data Type — Data type for output signal
Inherit (default) | Fixedpoint | Double | Single

Select Inherit to automatically determine the data type. The block checks that the inherited word
length matches the word length queried from the HDL simulator. If they do not match, Simulink
generates an error message. For example, if you connect a Signal Specification block to an output,
Inherit forces the data type specified by the Signal Specification block onto the output port.

If Simulink cannot determine the data type of the signal connected to the output port, it queries the
HDL simulator for the data type of the port. As an example, if the HDL simulator returns the VHDL
data type STD_LOGIC_VECTOR for a signal of size N bits, the data type ufixN is forced on the output
port. The implicit fraction length is 0.

You can also assign an explicit data type, with optional Fraction Length. By explicitly assigning a
data type, you can force fixed-point data types on output ports of the HDL Cosimulation block. For
example, for an 8-bit output port, setting the Sign to Signed and setting the Fraction Length to 5
forces the data type to sfix8_En5. You cannot force width. The width is always inherited from the
HDL simulator.
Dependencies

To enable this parameter, set I/O Mode to Output.

The Data Type and Fraction Length properties apply only to the following types of HDL signals:

• VHDL signals of any logic type, such as STD_LOGIC or STD_LOGIC_VECTOR
• Verilog® signals of wire or reg type

Sign — Sign component of output data type
Unsigned (default) | Signed

Sign designation for explicit output port data type.
Dependencies

To enable this parameter, set I/O Mode to Output, and set Data Type to Fixedpoint.

Fraction Length — Number of fractional bits in output data type
integer

Size, in bits, of the fractional part of a fixed-point output signal. For example, for an 8-bit output port,
setting the Sign to Signed and setting the Fraction Length to 5 forces the data type to sfix8_En5.
You cannot force width; the width is always inherited from the HDL simulator.
Dependencies

To enable this parameter, set I/O Mode to Output, and Data Type property to Fixedpoint.

The Data Type and Fraction Length properties apply only to the following types of HDL signals:

• VHDL signals of any logic type, such as STD_LOGIC or STD_LOGIC_VECTOR
• Verilog signals of wire or reg type

Clocks

Create optional rising-edge and falling-edge clocks that apply stimuli to your cosimulation model. The
scrolling list displays HDL clocks that drive values to the HDL signals that you are modeling, using

 HDL Cosimulation

1-11

the deposit method. The clock signals must be single-bit signals. Vector signals are not supported. For
instructions on adding and editing clock signals, see “Creating Optional Clocks with the Clocks Pane
of the HDL Cosimulation Block”.

Full HDL Name — Signal path name
string

Specify each clock as a signal path name, using the HDL simulator path name syntax. For example: /
manchester/clk or manchester.clk.

For information about and requirements for path specifications in Simulink, see “Specify HDL Signal/
Port and Module Paths for Cosimulation”.

You can copy signal path names directly from the HDL simulator wave window and paste them into
the Full HDL Name field. Use the Path.Name view and not Db::Path.Name view. After pasting a
signal path name into Full HDL Name, click Apply to complete the paste operation and update the
signal list.

Active Clock Edge — HDL clock edge used to sample signals
Rising (default) | Falling

Select Rising or Falling to specify either a rising-edge clock or a falling-edge clock.

Period — Clock period
2 (default) | integer

To specify an explicit clock period, enter a sample time equal to or greater than two resolution units
(ticks).

If the clock period is not an even integer, Simulink cannot create a 50% duty cycle. Instead, the HDL
Verifier software creates the falling edge at clockperiod/2 (rounded down to the nearest integer).

Timescales

Choose a timing relationship between Simulink and the HDL simulator, either manually or
automatically. These parameters specify a correspondence between one second of Simulink time and
some quantity of HDL simulator time. This quantity of HDL simulator time can be expressed in one of
the following ways:

• Relative timing relationship (Simulink seconds correspond to an HDL simulator-defined tick
interval)

• Absolute timing relationship (Simulink seconds correspond to an absolute unit of HDL simulator
time)

For more information on calculating relative and absolute timing modes, see “Defining the Simulink
and HDL Simulator Timing Relationship”.

For detailed information on the relationship between Simulink and the HDL simulator during
cosimulation, and on the operation of relative and absolute timing modes, see “Simulation
Timescales”.

Automatically determine timescale at start of simulation — When to calculate
automatic timescale
true (default) | false

1 Blocks

1-12

If you select this option, HDL Verifier calculates the timescale when you start the Simulink
simulation. If this option is not selected, click Determine Timescale Now to calculate the timescale
immediately without starting a simulation. Alternatively, you can manually select a timescale. For
guidance through the automatic timescale calculation, see “Specify Timing Relationship
Automatically”.

1 second in Simulink corresponds to {} in the HDL simulator — Timing
relationship between Simulink and HDL simulator
integer and time units

This parameter consists of a Time value and a TimeUnit value.

To configure relative timing mode for a cosimulation:

1 Verify that Tick, the default setting for TimeUnit, is selected. If it is not, then select it from the
list on the right.

2 Enter a scale factor in the Time text box on the left. The default scale factor is 1.

To configure absolute timing mode for a cosimulation:

1 Set TimeUnit to a unit of absolute time: fs (femtoseconds), ps (picoseconds), ns (nanoseconds),
us (microseconds), ms (milliseconds), or s (seconds).

2 Enter a scale factor in the Time text box on the left. The default scale factor is 1.

Connection

Connection mode — Connection between Simulink and HDL simulator
Full Simulation (default) | Confirm Interface Only | No Connection

Type of connection between Simulink and the HDL simulator.

• Full Simulation: Confirm interface and run HDL simulation.
• Confirm Interface Only: Connect to the HDL simulator and check for signal names,

dimensions, and data types, but do not run HDL simulation. During Simulink simulation, there is
no contact with the HDL simulator.

• No Connection: Do not communicate with the HDL simulator. The HDL simulator does not need
to be started.

HDL simulator is running on this computer — Same host for HDL simulator and
Simulink
true (default) | false

When both applications run on the same computer, you can choose shared memory or TCP sockets for
the communication channel between the applications. If you do not select this option, only TCP/IP
socket mode is available, and the Connection method list becomes unavailable.

Connection method — Connection between HDL simulator and Simulink
Socket (default) | Shared memory

• Socket: Simulink and the HDL simulator communicate via a designated TCP/IP socket. TCP/IP
socket mode is more versatile. You can use it for single-system and network configurations. This
option offers the greatest scalability. For more on TCP/IP socket communication, see “TCP/IP
Socket Ports”.

 HDL Cosimulation

1-13

• Shared memory: Simulink and the HDL simulator communicate via shared memory. Shared
memory communication provides optimal performance and is the default mode of communication.

Dependencies

This parameter shows when you select HDL Simulator is running on this computer.

Host name — HDL simulator host machine
string

This parameter applies if you run Simulink and the HDL simulator on different computers.

Port number or service — Socket port number
string

Indicate a valid TCP socket port number or service for your computer system, if you are not using
shared memory. For information on choosing TCP socket ports, see “TCP/IP Socket Ports”.

Show connection info on icon — Add connection parameters on block icon
true (default) | false

When you select this option, the HDL Cosimulation block icon displays the current communication
parameter settings. If you select shared memory, the icon displays SharedMem. If you select TCP
socket communication, the icon displays Socket and displays the host name and port number in the
format hostname:port.

This information can help you distinguish between multiple HDL Cosimulation blocks, where each
block is communicating to a different instance of the HDL simulator.

Simulation

Time to run HDL simulator before cosimulation starts — Offset that aligns Simulink
with HDL simulator
integer and time unit

Specifies the amount of time to run the HDL simulator before beginning simulation in Simulink.
Specifying this time properly aligns the signal of the Simulink block and the HDL signal so that they
can be compared and verified directly without additional delays.

This setting consists of a PreRunTime value and a PreRunTimeUnit value.

• PreRunTime: Any valid time value. The default is 0.
• PreRunTimeUnit: Specifies the units of time for PreRunTime.

• Tick
• s
• ms
• us
• ns
• ps
• fs

1 Blocks

1-14

Pre-simulation Tcl commands — Commands to run in HDL simulator before cosimulation
string

The cosimulation tool executes these commands in the HDL simulator, before simulating the HDL
component of your Simulink model. If you enter multiple commands on one line, append each
command with a semicolon (;), the standard Tcl concatenation operator.

For example, use this parameter to generate a one-line echo command to confirm that a simulation is
running, or a complex script that performs an extensive simulation initialization and startup
sequence. You cannot use these commands to change simulation state.

You can specify any valid Tcl command. The Tcl command you specify cannot include commands that
load an HDL simulator project or modify simulator state. For example, the character vector cannot
include commands such as start, stop, or restart (for ModelSim®) or run, stop, or reset (for
Incisive).

Post-simulation Tcl commands — Commands to run in HDL simulator after cosimulation
string

The cosimulation tool executes these commands in the HDL simulator, after simulating the HDL
component of your Simulink model.

You can specify any valid Tcl command. The Tcl command you specify cannot include commands that
load an HDL simulator project or modify simulator state. For example, the string cannot include
commands such as start, stop, or restart (for ModelSim) or run, stop, or reset (for Incisive).

Note After each ModelSim simulation, the simulator takes time to update the coverage result. To
prevent the potential conflict between this process and the next cosimulation session, add a short
pause between each successive simulation.

Extended Capabilities
HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

HDL Coder provides additional configuration options that affect HDL implementation and synthesized
logic. You can generate HDL code for cosimulation blocks used with Mentor Graphics® ModelSim or
Cadence Incisive®.

Each of the HDL Cosimulation blocks cosimulates a hardware component by applying input signals
to, and reading output signals from, an HDL model that executes under an HDL simulator. See
“Generate a Cosimulation Model” (HDL Coder).

For information about timing, latency, data typing, frame-based processing, and other issues when
setting up an HDL cosimulation, see “Define HDL Cosimulation Block Interface”.

You can use an HDL Cosimulation block with HDL Coder to generate an interface to your manually
written or legacy HDL code. When an HDL Cosimulation block is included in a model, the coder
generates a VHDL or Verilog interface, depending on the selected target language.

When the target language is VHDL, the generated interface includes:

 HDL Cosimulation

1-15

• An entity definition. The entity defines ports (input, output, and clock) corresponding in name and
data type to the ports configured on the HDL Cosimulation block. Clock enable and reset ports are
also declared.

• An RTL architecture including a component declaration, a component configuration declaring
signals corresponding to signals connected to the HDL Cosimulation ports, and a component
instantiation.

• Port assignment statements as required by the model.

When the target language is Verilog, the generated interface includes:

• A module defining ports (input, output, and clock) corresponding in name and data type to the
ports configured on the HDL Cosimulation block. The module also defines clock enable and reset
ports, and wire declarations corresponding to signals connected to the HDL Cosimulation ports.

• A module instance.
• Port assignment statements as required by the model.

Before initiating code generation, to check the requirements for using the HDL Cosimulation block
for code generation, select Simulation > Update Diagram.

HDL Architecture

This block has a single, default HDL architecture.

HDL Block Properties

For implementation parameter descriptions, see “Customize Black Box or HDL Cosimulation
Interface” (HDL Coder).

See Also
hdlverifier.HDLCosimulation

Topics
“Import HDL Code for HDL Cosimulation Block”
“Create Simulink Model for Component Cosimulation”
“Create a Simulink Cosimulation Test Bench”
“Run a Simulink Cosimulation Session”
“Simulation Timescales”
“Clock, Reset, and Enable Signals”

Introduced in R2008a

1 Blocks

1-16

To VCD File
Generate value change dump (VCD) file
Library: HDL Verifier / For Use with Cadence Incisive

HDL Verifier / For Use with Mentor Graphics ModelSim

Description
The To VCD File block generates a VCD file that logs changes to its input ports. You can use VCD files
during design verification in these ways:

• Compare results of multiple simulation runs, using the same or different simulator environments.
• Provide input to postsimulation analysis tools.
• Porting areas of an existing design to a new design.

You can specify the following parameters:

• Name of the generated VCD file
• Number of block input ports
• Timescale, that relates Simulink sample times with HDL simulator ticks

VCD files can grow large for large designs or small designs with long simulation runs. The maximum
number of signals supported in a generated VCD file is 943 (830,584).

You can use the To VCD File block in models running in normal, accelerator, or rapid accelerator
simulation modes. The To VCD File parameters are not tunable in any of the simulation modes. For
more information about these modes, see “How Acceleration Modes Work” (Simulink).

The To VCD File block is integrated into the Simulink Viewers and Generators Manager. When you
add a VCD block to a model using the manager, the signal name that appears in the VCD file may not
be the one you specified. After simulation, open the VCD file and check the signal name. If you cannot
find the signal name you specified, look for an automatic signal name such as In_1. When you use
the VCD block directly from the HDL Verifier library, the signal names match correctly.

Note The To VCD File block does not support framed signals.

VCD File Format

The format of generated VCD files adheres to IEEE® Std 1364-2001. The table describes the format.

VCD File Content Description
$date
23-Sep-2003 14:38:11
$end

Date and time the file was
generated.

$version HDL
 Verifier version 1.0 $ end

Version of the To VCD File block
that generated the file.

 To VCD File

1-17

VCD File Content Description
$timescale 1 ns $ end Timescale used during the

simulation.
$scope module manchestermodel $end Scope of module being dumped.
$var wire 1 ! Original Data [0] $end
$var wire 1 " Recovered Clock [0] $end
$var wire 1 # Recovered Data [0] $end
$var wire 1 $ Data Validity [0] $end

Variable definitions. Each definition
associates a signal with a character
identification code (symbol).

The symbols are derived from
printable characters in the ASCII
character set from ! to ~.

Variable definitions also include the
variable type (wire) and size in bits.

$upscope $end Marks a change to the next highest
level in the HDL design hierarchy.

$enddefinitions $end Marks the end of the header and
definitions section.

#0 Simulation start time.
$dumpvars
 0!
 0"
 0#
 0$
$end

Lists the values of all defined
variables at time 0.

#630
 1!

Starting point of logged value
changes from checks of variable
values made at each simulation
time increment.

This entry indicates that at 63
nanoseconds, the value of signal
Original Data changed from 0
to 1.

.

.

.
#1160
 1#
 1$

At 116 nanoseconds, the values of
signals Recovered Data and
Data Validity changed from 0
to 1.

$dumpoff
 x!
 x"
 x#
 x$
$end

Marks the end of the file by
dumping the values of all variables
as the value x.

Display VCD File Data

You can display VCD file data graphically or analyze the data with postprocessing tools. For example,
the ModelSim vcd2wlf tool converts a VCD file to a WLF file, which you can view in a ModelSim

1 Blocks

1-18

wave window. Other examples of postprocessing include the extraction of data pertaining to a
particular section of a design hierarchy or data generated during a specific time interval.

Ports
Specify the number of signals to log using Number of input ports. The block has no output ports.

Input

Port_1, Port_2, ..., Port_N — Signal to log to VCD file
scalar | vector | matrix

Multi-dimensional signals are flattened to 1-D vectors in the VCD file.
Data Types: int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 | Boolean | Fixed-
point

Parameters
VCD file name — Name of generated VCD file
string

Name of the generated VCD file. If you specify a file name only, Simulink places the file in your
current MATLAB folder. To place the generated file in a different location, specify a complete path
name. If you specify the same name for multiple To VCD File blocks, Simulink automatically adds a
numeric postfix to identify each instance uniquely.

Note To save the generated file with the .vcd file extension, you must specify it explicitly.

Number of input ports — Number of input signals to log
integer

Number of input signals to log data from. The block can log up to 943 (830,584) signals, each of
which maps to a unique symbol in the VCD file.

In some cases, a single input port maps to multiple symbols. This multiple mapping occurs when the
input port receives a multidimensional signal. Because the VCD specification does not include
multidimensional signals, Simulink flattens them to a 1-D vector in the file.

Timescale — Timing relationship between Simulink and the HDL simulator
integer and time units

Timing relationship, defined as the correspondence between one second of Simulink time and some
quantity of HDL simulator time. You can express this quantity of HDL simulator time in one of the
following ways:

• In relative terms, that is, as some number of HDL simulator ticks. In this case, the cosimulation
operates in relative timing mode, which is the timing mode default.

To use relative mode, in the 1 second in Simulink corresponds to {value} {unit} in the HDL
simulator parameter, set the unit to Tick, and the value to the number of ticks you want. The
default value is 1 tick.

 To VCD File

1-19

• In absolute units, such as milliseconds or nanoseconds. In this case, the cosimulation operates in
absolute timing mode.

To use absolute mode, in the 1 second in Simulink corresponds to {value} {unit} in the
HDL simulator parameter, set the number of resolution units and the type of unit (fs, ps, ns, us,
ms, s). Then, in the 1 HDL Tick is defined as parameter, set the value of the HDL simulator tick
to 1, 10, or 100, and choose a resolution unit.

Extended Capabilities
HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

HDL Architecture

This block can be used for simulation visibility in subsystems that generate HDL code, but is not
included in the hardware implementation.

See Also
Topics
“Add a Value Change Dump (VCD) File”
“Visually Compare Simulink Signals with HDL Signals”
“Simulation Timescales”

Introduced in R2008a

1 Blocks

1-20

System Objects

2

hdlverifier.FILSimulation
Package: hdlverifier

FIL simulation with MATLAB

Description
The FILSimulation System object™ connects an FPGA execution to a MATLAB test bench. It does
so by applying input signals to and reading output signals from an HDL model running on an FPGA.
You can use this object to model a source or sink device by configuring the object with input or output
ports only.

To run a simulation consisting of a MATLAB test bench communicating with an FPGA execution:

1 Customize the hdlverifier.FILSimulation object using FPGA-in-the-Loop Wizard.
2 Create the object in your design and set its properties.
3 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects? (MATLAB).

Creation
To create an hdlverifier.FILSimulation System object, use the FPGA-in-the-Loop Wizard to
customize the FILSimulation System object. The output of the FILWizard is a file called
toplevel_fil, where toplevel is the name of the top level HDL module. You can then create the
System object by assigning it to a local variable.

filobj = toplevel_fil creates the System object customized by the FPGA-in-the-Loop Wizard.
toplevel is the name of the top-level module in your HDL code.

You can create the System object and set its properties:
filobj = toplevel_fil('InputSignals', {'/top/in1','/top/in2'}, ...
 'OutputSignals', {'/top/out1','/top/out2'}, ...
 'OutputDataTypes', {'double','fixedpoint'}, ...
 'OutputSigned', [true,false]);

You can also adjust writable properties after creating the System object:

filobj = toplevel_fil;
filobj.OutputDataTypes = char('fixedpoint', 'integer', 'fixedpoint');
filObj.OutputSigned = [false, true, true];

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System
Objects (MATLAB).

2 System Objects

2-2

Connection — Parameters for connection with FPGA board
char('UDP','192.168.0.2','00-0A-35-02-21-8A') (default) | character vector | string scalar

This property is read-only.

Parameters for the connection with the FPGA board, specified as a character vector or string scalar.
The vector consists of three parts:

• Connection type
• Board IP address
• Board MAC address (optional)

Example: char('UDP','192.168.0.2','00-0A-35-02-21-8A') specifies a UDP connection to IP
address 192.168.0.2, where the board's MAC address is 00-0A-35-02-21-8A.

DUTName — DUT top-level name
'' (default) | character vector | string scalar

This property is read-only.

Design under test (DUT) top-level name, specified as a character vector or string scalar.
Example: 'inverter_top'

FPGABoard — FPGA board name
'' (default) | character vector | string scalar

This property is read-only.

FPGA board name, specified as a character vector or string scalar.

FPGAProgrammingFile — Path to FPGA programming file
'' (default) | character vector | string scalar

Path to the FPGA programming file, specified as a character vector or string scalar.
Example: 'c:\work\filename'

FPGAVendor — Name of FPGA chip vendor
'Xilinx' (default) | 'Altera' | 'Microsemi'

This property is read-only.

Name of the FPGA chip vendor, specified as 'Xilinx', 'Microsemi', or 'Altera'.
Example: 'Altera'

InputBitWidths — Input widths in bits
0 (default) | integer | vector of integers

This property is read-only.

Input widths in bits, specified as an integer or a vector of integers. When this property is an integer,
all inputs have the same bit width. When this property is a vector of integers, the vector must be the
same size as the number of inputs, where each value specifies a different input width.
Example: 10 – All inputs are ten bits wide.

 hdlverifier.FILSimulation

2-3

Example: [12,6,1] – The design has three inputs: One is 12 bits wide, one is 6 bits wide, and one is
1 bit wide.

InputSignals — Input paths in HDL code
'' (default) | character vector | cell array of character vectors | string scalar | string array

This property is read-only.

Input paths in the HDL code, specified as a character vector, cell array of character vectors, string
scalar, or string array.
Example: '/top/in1'
Example: char('in1','in2')

OutputBitWidths — Output widths, in bits
0 (default) | integer | vector of integers

This property is read-only.

Output widths in bits, specified as an integer or a vector of integers.

If you specify a scalar, the outputs each have the same bit width. If you specify a vector, the vector
must be the same size as the number of outputs.
Example: 10 – All outputs are 10 bits wide.
Example: [12,6,1] – The design has three outputs: one is 12 bits wide, one is 6 bits wide, and one is
1 bit wide.

OutputDataTypes — Output data types
'fixedpoint' (default) | character vector | cell array of character vectors | string scalar | string
array

Output data types, specified as a character vector, cell array of character vectors, string scalar, or
string array.

If you specify only one data type, all outputs have the same type. Otherwise, specify a cell array of the
same size as the number of outputs.
Example: 'integer'
Example: char('integer','fixedpoint','integer')

OutputDownsampling — Downsampling factor and phase of outputs
[1,0] (default) | vector of two integers

Downsampling factor and phase of the outputs, specified as a vector of two integers. The first integer
specifies the downsampling factor and is positive. The second integer specifies the phase and is
either zero or positive but less than the downsampling factor.
Example: [3,1]

OutputFractionLengths — Output fraction lengths
0 (default) | integer | vector of integers

Output fraction lengths, specified as an integer or as a vector of integers.

2 System Objects

2-4

If you only specify a scalar, each output has the same fraction length. Otherwise specify a vector of
the same size as the number of outputs.
Example: 10 — All output fraction lengths are 10 bits.
Example: [16,8] — One output fraction length is 16 bits, and the other one has a fraction length of 8
bits.

OutputSignals — Output port name in HDL top level
'' (default) | character vector | cell array of character vectors | string scalar | string array

This property is read-only.

Output port names in the HDL top-level module, specified as a character vector, cell array of
character vectors, string scalar, or string array.
Example: 'out1',
Example: char('out1','out2')

OutputSigned — Sign of outputs
false (default) | true | logical vector

Sign of the outputs, specified as false (unsigned), true (signed), or as a logical vector.

If you provide only a scalar, each output has the same sign. Otherwise, you should provide a vector of
the same size as the number of outputs.
Example: true
Example: [true, true, false] — Three outputs consisting of a signed value, an unsigned value,
and a signed value.

OverclockingFactor — Hardware overclocking factor
1 (default) | integer

Hardware overclocking factor, specified as an integer.
Example: 3

ScanChainPosition — Position of FPGA in JTAG scan chain
1 (default) | positive integer

This property is read-only.

Position of the FPGA in the JTAG scan chain, specified as a positive integer.
Example: 1

SourceFrameSize — Frame size of source (only for HDL source block)
1 (default) | integer

Frame size of the source, specified as an integer. This property is relevant only for HDL source
blocks, that is, HDL blocks that have no inputs.
Example: 1

 hdlverifier.FILSimulation

2-5

Usage

Syntax
[hdloutputs] = filobj([hdlinputs])

Description

[hdloutputs] = filobj([hdlinputs]) connects to the FPGA, writes hdlinputs to the FPGA
and reads hdloutputs from the FPGA.

Input Arguments

hdlinputs — Inputs to run on FPGA
types are as specified by InputBitWidths property

Inputs to run on the FPGA, specified as an array of values. The size of the array must much the
number of inputs of the module executed on the FPGA.
Example: [RealFft, ImagFft] = fft_obj(3,12); the values 3 and 12 are driven into the FPGA.
Data Types: int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 | logical | Fixed-
point

Output Arguments

hdloutputs — Outputs returned from FPGA
'' (default) | character vector | cell array of character vectors | string scalar | string array

Outputs returned from the FPGA, specified as an array of values. The size of the array matches the
number of outputs of the module executed on the FPGA.
Example: [RealFft, ImagFft] = fft_obj(real_in,imaginary_in); returns a complex
number from the FPGA with two values: RealFft and ImagFft.
Data Types: int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 | logical | Fixed-
point

Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

Specific to hdlverifier.FILSimulation

Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and input

characteristics
reset Reset internal states of System object

2 System Objects

2-6

Examples

FPGA-in-the-Loop simulation using MATLAB System Object

This example use a MATLAB System object and a FPGA to verify a register transfer level (RTL) design
of a Fast Fourier Transform (FFT) of size 8 written in Verilog. The FFT is commonly used in digital
signal processing to produce frequency distribution of a signal.

To verify the correctness of this FFT, a MATLAB System object testbench is provided. This testbench
generates a periodic sinusoidal input to the HDL design under test (DUT) and plots the Fourier
Coefficients in the Complex Plane.

Set FPGA Design Software Environment

Before using FPGA-in-the-Loop, make sure your system environment is set up properly for accessing
FPGA design software. You can use the function hdlsetuptoolpath to add ISE or Quartus II to the
system path for the current MATLAB session.

For Xilinx FPGA boards, run

>>hdlsetuptoolpath('ToolName', 'Xilinx ISE', 'ToolPath', 'C:\Xilinx\13.1\ISE_DS\ISE\bin\nt64\ise.exe');

This example assumes that the Xilinx ISE executable is C:\Xilinx\13.1\ISE_DS\ISE\bin\nt64\ise.exe.
Substitute with your actual executable if it is different.

For Altera boards, run

>>hdlsetuptoolpath('ToolName','Altera Quartus II','ToolPath','C:\altera\11.0\quartus\bin\quartus.exe');

This example assumes that the Altera Quartus II executable is C:\altera\11.0\quartus\bin\quartus.exe.
Substitute with your actual executable if it is different.

Copy FFT HDL Files

Copy the HDL files for the FFT example into your local directory

copyFILDemoFiles('fft');

Launch FilWizard

Launch the FIL Wizard prepopulated with the FFT example information. Enter your FPGA board
information in the first step, follow every step of the Wizard and generate the FPGA programming file
and FIL System object.

filWizard('fft_hdlsrc/fft8_sysobj_fil.mat');

Program FPGA

Program the FPGA with the generated programming file. Before continuing, make sure the FIL
Wizard has finished the FPGA programming file generation. Also make sure your FPGA board is
turned on and connected properly.

run('fft8_fil/fft8_programFPGA');

Generating iMPACT command file
Checking iMPACT tool

 hdlverifier.FILSimulation

2-7

Start loading bitstream "S:\MATLAB\demo\fft8_fil\fft8_fil.bit"
Loading bitstream "S:\MATLAB\demo\fft8_fil\fft8_fil.bit" completed successfully

Instantiate SineWave System Objects

The following code instantiates the system objects that represent the sine wave generator (F=100Hz,
Sampling=1000Hz, complex fix point output).

SinGenerator = dsp.SineWave('Frequency ', 100, ...
 'Amplitude', 1, ...
 'Method', 'Table lookup', ...
 'SampleRate', 1000, ...
 'OutputDataType', 'Custom', ...
 'CustomOutputDataType', numerictype([], 10, 9), ...
 'ComplexOutput',true);

Instantiate the FPGA-in-the-Loop System Object

fft8_fil is a customized FILSimulation System object, which represents the HDL implementation of the
FFT running on the FPGA in this simulation system.

Fft = fft8_fil;

Run the Simulation

This example simulates the sine wave generator and the FFT HDL implementation via the FPGA-in-
the-Loop System object. This section of the code calls the processing loop to process the data sample-
by-sample.

for ii=1:1000
 % Read 1 sample from the sine wave generator
 ComplexSinus = step(SinGenerator);

 % Send/receive 1 sample to/from the HDL FFT on the FPGA
 [RealFft, ImagFft] = step(Fft,real(ComplexSinus),imag(ComplexSinus));

 % Store the FFT sample in a vector
 ComplexFft(ii) = RealFft + ImagFft*1i;
end

Display the Fourier Coefficients

Plot the Fourier Coefficients in the Complex Plane.

% Discard the first 12 samples (initialization of the HDL FFT)
ComplexFft(1:12)=[];

% Display the FFT
plot(ComplexFft,'ro');
title('Fourier Coefficients in the Complex Plane');
xlabel('Real Axis');
ylabel('Imaginary Axis');

% This concludes the "FPGA-in-the-Loop simulation using MATLAB System
% Object" example.

2 System Objects

2-8

See Also
FIL Simulation | FPGA-in-the-Loop Wizard

Topics
“FPGA-in-the-Loop Simulation Workflows”

Introduced in R2012b

 hdlverifier.FILSimulation

2-9

hdlverifier.HDLCosimulation
Package: hdlverifier

Create a System object for HDL cosimulation with MATLAB

Description
The hdlverifier.HDLCosimulation System object cosimulates MATLAB and a hardware
component. The System object writes input signals to and reads output signals from an HDL model
under simulation in the HDL simulator. You can use this System object to model a source or sink
device by configuring the System object with only output or input ports, respectively.

To create a System object for HDL cosimulation with MATLAB:

1 Customize the hdlverifier.HDLCosimulation object using Cosimulation Wizard.
2 Create the object in your design and set its properties.
3 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects? (MATLAB).

Creation
To create an hdlverifier.HDLCosimulation System object, use the Cosimulation Wizard to
customize the HDLCosimulation System object. The output of the Cosim Wizard is a file called
hdlcosim_toplevel.m, where toplevel is the name of the top level HDL module. You can then
create the System object by assigning it to a local variable.

Syntax
hdlc = hdlverifier.HDLCosimulation
hdlc = hdlverifier.HDLCosimulation(Name,Value)
hdlc = hdlcosim
hdlc = hdlcosim(Name,Value)

Description

hdlc = hdlverifier.HDLCosimulation creates an hdlverifier.HDLCosimulation System
object with default property values. This System object provides an interface to your HDL simulation
in your MATLAB workspace.

hdlc = hdlverifier.HDLCosimulation(Name,Value) specifies properties by one or more
Name,Value pairs. Enclose each property name in single quotes. For example,

hdlc = hdlverifier.HDLCosimulation('InputSignals','/top/in1', ... ,
'OutputFractionLangths',10);

hdlc = hdlcosim creates an hdlverifier.HDLCosimulation System object with default
property values. This syntax is equivalent to the hdlverifier.HDLCosimulation syntax.

2 System Objects

2-10

hdlc = hdlcosim(Name,Value) is equivalent to the
hdlverifier.HDLCosimulation(Name,Value) syntax.

The Cosimulation Wizard creates an hdlverifier.HDLCosimulation System object using
existing HDL code, and an HDL launch script. Use the Cosimulation Wizard for easier startup.

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System
Objects (MATLAB).

InputSignals — Input paths in HDL code
'' (default) | character vector | cell array of character vectors

Input paths in the HDL code, specified as a character vector or cell array of character vectors. The
paths are specified relative to the top level of the HDL hierarchy.
Example: 'data_in'
Example: {'/top/in1','/top/in2'}
Data Types: char | cell

OutputSignals — Output paths in HDL code
'' (default) | character vector | cell array of character vectors

Output paths in the HDL code, specified as a character vector or cell array of character vectors. The
paths are specified relative to the top level of the HDL hierarchy.
Example: 'out1'
Example: {'out1','out2'}
Data Types: char | cell

OutputDataTypes — Data types of output signals
'' (default) | 'fixedpoint' | 'double' | 'single'

Data types of the output signals, specified as a cell array of character vectors. Valid data types are
'fixedpoint','double', or 'single'.

If you specify only one data type, each output has that same data type. To assign different data types
to each output, specify a cell array of the same size as the number of outputs. Each element in the
OutputDataTypes cell array specifies the data type of the corresponding element in the System
object output (hdloutputs).
Example: {'fixedpoint'} – All output data types are fixedpoint.
Example: {'double','single'} – The data type of the first output is double and the second is
single.

 hdlverifier.HDLCosimulation

2-11

Note When OutputDataTypes is {'fixedpoint'}, the bit-width matches the size of a built-in
data type (8,16,32, or 64), and OutputFractionLengths is set to 0, the data type of the output
signal is returned as that built-in data type.

Data Types: cell

OutputSigned — Sign of outputs
false (default) | true | logical vector

Sign of the outputs, specified as false (unsigned), true (signed), or a logical vector.

If you provide only true or false, each output has that corresponding sign. To apply different signs
to each output, specify a logical vector of the same size as the number of outputs. Each element in
the OutputSigned vector specifies the sign of the corresponding element in the System object
output (hdloutputs).
Example: true – All outputs have a signed value.
Example: [true,true,false] — The first output is a signed value, the second output is a signed
value, and the third (and final) output is an unsigned value.

OutputFractionLengths — Output fraction lengths
0 (default) | integer | vector of integers

Output fraction lengths, in bits, specified as an integer or vector of integers.

If you specify only a scalar, each output has that same fraction length. To apply different fraction
lengths to each output, specify a vector of the same size as the number of outputs. Each element in
the OutputFractionLengths vector specifies the fraction length of the corresponding element in
the System object output (hdloutputs).
Example: 10 — All outputs have a fraction length of 10 bits.
Example: [16,8] — The first output has a fraction length of 16 bits, and the second (and final)
output has a fraction length of 8 bits.

TCLPreSimulationCommand — Tool Command Language (Tcl) presimulation command
executed by HDL simulator
'' (default) | character vector

Tcl pre simulation command executed by the HDL simulator during the first call to the System object,
specified as a character vector. This Tcl presimulation command is also executed during the first call
to the System object after it is released.
Example: 'force /top/rst 1 0, 0 2 ns; force /top/clk 0 0, 1 1 ns -repeat 2 ns'
Data Types: char

TCLPostSimulationCommand — Tcl postsimulation command executed by HDL simulator
'' (default) | character vector

Tcl post simulation command executed by the HDL simulator during a call to release the System
object, specified as a character vector.
Example: 'echo "done"'
Data Types: char

2 System Objects

2-12

PreRunTime — Delay in HDL simulator before cosimulation
{0,'ns'} (default) | cell array

Delay in HDL simulator before the cosimulation starts, specified as a cell array with two elements.

• The first element is the HDL presimulation delay, specified as a nonnegative integer.
• The second element is the time unit, specified as one of these character vectors:

'fs','ps','ns','us','ms', or 's'.

Example: {10,'fs'}
Data Types: cell

Connection — Parameters for connection to HDL simulator
{'SharedMemory'} (default) | cell array

Parameters for the connection to the HDL simulator, specified as a cell array with one, two, or three
elements.

• The first element is the connection type, specified as 'SharedMemory' or 'Socket'. If
specifying shared memory, then the port number and host name (the second and third elements in
this cell array) are not applicable.

• The second element is the port number, which must be a positive integer. This value is set to 4449
if not specified.

• The third element is the host name of the HDL session. This value is set to localhost if not
specified.

Example: {'SharedMemory'}
Example: {'Socket',1234}
Example: {'Socket',1234,'hostname'}
Data Types: cell

FrameBasedProcessing — Enable frame-based processing
false (default) | true

Note The FrameBasedProcessing property will be removed in a future release.

Sample mode or frame mode is automatically detected based on the size of the inputs during the
System object execution.

SampleTime — Elapsed simulator time between calls to the System object
{10,'ns'} (default) | cell array

Elapsed time in the HDL simulator between each call to the System object, specified as a cell array
with two elements.

• The first element is the time between two calls to the System object, specified as a positive
integer.

• The second element is the time unit, specified as a character vector:
'fs','ps','ns','us','ms','s'.

 hdlverifier.HDLCosimulation

2-13

Example: {10,'ns'}
Data Types: cell

Usage

Syntax
hdloutputs = hdlc(hdlinputs)

Description

hdloutputs = hdlc(hdlinputs) connects to the HDL simulator, writes hdlinputs to the HDL
simulator, and reads hdloutputs from the HDL simulator. The elapsed simulation time between each
call to the System object is defined by the SampleTime property.

Input Arguments

hdlinputs — Inputs to HDL simulator
comma-separated list of values for HDL input ports

Inputs to the HDL simulator, specified as a comma-separated list of values that are driven to your
HDL input ports. The HDL input ports are set by the InputSignals property. The number of elements
in this comma-separated pair must equal the number of HDL input ports. Each input argument value
is driven to its corresponding HDL input port.

For example, if InputSignals is set as {'in1','in2'}, specify out = hdlc(input1,input2) to
drive the value input1 to in1 and input2 to in2.
Example: [RealFft, ImagFft] = hdlc(3,12); the values 3 and 12 are driven as inputs to the
HDL simulator, which has two input ports.

Output Arguments

hdloutputs — Outputs from the HDL simulator
scalar | vector

Outputs from the HDL simulator, returned as a scalar or vector. Each returned element is the output
from its corresponding HDL output port. The HDL output ports are specified in the OutputSignals
property. The number of elements returned is the same as the number of HDL output ports specified.
For example, if OutputSignals is set as {'out1','out2'}, specify [o1, o2] = hdlc(i1,i2) to
assign the value from out1 to o1 and out2 to o2.
Example: out1 = hdlc(3,12); assigns the output value from an HDL simulator with one output
port.
Example: [RealFft, ImagFft] = hdlc(3,12); assigns output values from an HDL simulator
with two output ports. In this example, RealFft is the output from the first port and ImagFft is the
output from the second port.

Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

2 System Objects

2-14

release(obj)

Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and input

characteristics
reset Reset internal states of System object

Examples

Verify Viterbi Decoder Using MATLAB System Object and HDL Simulator

This example shows you how to use MATLAB® System objects and Mentor Graphics® ModelSim®/
QuestaSim® or Cadence® Incisive®/Xcelium® to cosimulate a Viterbi decoder implemented in
VHDL.

Set Simulation Parameters and Instantiate Communication System Objects

If you are using Incisive/Xcelium, set simulator variable to 'Incisive'

Simulator = 'Incisive';

% or if you are using ModelSim/QuestaSim, set simulator variable to
% 'ModelSim'
Simulator = 'ModelSim';

% The following code sets up the simulation parameters and instantiates the
% system objects that represent the channel encoder, BPSK modulator, AWGN
% channel, BPSK demodulator, and error rate calculator. Those objects
% comprise the system around the Viterbi decoder and can be thought of as
% the test bed for the Viterbi HDL implementation.

EsNo = 0; % Energy per symbol to noise power spectrum density ratio in dB
FrameSize = 1024; % Number of bits in each frame

% Convolution Encoder
hConEnc = comm.ConvolutionalEncoder;
% BPSK Modulator
hMod = comm.BPSKModulator;
% AWGN channel
hChan = comm.AWGNChannel('NoiseMethod', ...
 'Signal to noise ratio (Es/No)',...
 'SamplesPerSymbol',1,...
 'EsNo',EsNo);
% BPSK demodulator
hDemod = comm.BPSKDemodulator('DecisionMethod','Log-likelihood ratio',...
 'Variance',0.5*10^(-EsNo/10));
% Error Rate Calculator
hError = comm.ErrorRate('ComputationDelay',100,'ReceiveDelay', 58);

Instantiate the Cosimulation System Object

The hdlcosim function returns an HDL cosimulation System object, which represents the HDL
implementation of the Viterbi decoder in this simulation system.

 hdlverifier.HDLCosimulation

2-15

switch Simulator
 case 'ModelSim'
 hDec = hdlcosim('InputSignals', {'/viterbi_block/In1','/viterbi_block/In2'}, ...
 'OutputSignals', {'/viterbi_block/Out1'}, ...
 'OutputSigned', false, ...
 'OutputFractionLengths', 0, ...
 'TCLPreSimulationCommand', 'force /viterbi_block/clk_enable 1 0; force /viterbi_block/clk 0 0 ns, 1 5 ns -repeat 10 ns; force /viterbi_block/reset 1 0 ns, 0 8 ns; ', ...
 'TCLPostSimulationCommand', 'echo "done";', ...
 'PreRunTime', {10,'ns'}, ...
 'Connection', {'Shared'}, ...
 'SampleTime', {10,'ns'});
 case 'Incisive'
 hDec = hdlcosim('InputSignals', {'/viterbi_block/In1','/viterbi_block/In2'}, ...
 'OutputSignals', {'/viterbi_block/Out1'}, ...
 'OutputSigned', false, ...
 'OutputFractionLengths', 0, ...
 'TCLPreSimulationCommand', 'force :clk B"0" -after 0ns B"1" -after 5ns -repeat 10ns; force reset B"1" -after 0ns B"0" -after 8ns; force :clk_enable B"1" -after 0ns', ...
 'TCLPostSimulationCommand', 'echo "done";', ...
 'PreRunTime', {10,'ns'}, ...
 'Connection', {'Shared'}, ...
 'SampleTime', {10,'ns'});
end

Launch HDL Simulator

The vsim and nclaunch command launches HDL simulator. The launched HDL simulator session
compiles the HDL design and loads the HDL simulation. You are ready to perform cosimulation when
the HDL simulation is fully loaded in simulator.

disp('Waiting for HDL simulator to launch ...');
switch Simulator
 case 'ModelSim'
 vsim('tclstart',viterbi_tclcmds_modelsim('vsimmatlabsysobj'));
 case 'Incisive'
 nclaunch('tclstart',viterbi_tclcmds_incisive('hdlsimmatlabsysobj'));
end
Timeout=450;
processid = pingHdlSim(Timeout);
% Check if HDL simulator is ready for Cosimulation.
assert(ischar(processid),['Timeout: HDL simulator took more than ', num2str(Timeout),' seconds to setup,please increase the timeout in ''pingHdlSim''']);
disp('Ready for cosimulation ...');

Run Cosimulation

This example simulates the BPSK communication system in MATLAB incorporating the Viterbi
decoder HDL implementation via the cosimulation System object. This section of the code calls the
processing loop to process the data frame-by-frame with 1024 bits in each data frame.

for counter = 1:20480/FrameSize
 data = randi([0 1],FrameSize,1);
 encodedData = step(hConEnc, data);
 modSignal = step(hMod, encodedData);
 receivedSignal = step(hChan, modSignal);
 demodSignalSD = step(hDemod, receivedSignal);
 quantizedValue = fi(4-demodSignalSD,0,3,0);
 input1 = quantizedValue(1:2:2*FrameSize);
 input2 = quantizedValue(2:2:2*FrameSize);
 receivedBits = step(hDec,input1, input2);

2 System Objects

2-16

 errors = step(hError, data, double(receivedBits));
end

Display the Bit-Error Rate

The Bit-Error Rate is displayed for the Viterbi decoder.

sprintf('Bit Error Rate is %d\n',errors(1))

Destroy Cosimulation System Object to Release HDL Simulator

The HDL simulator is unblocked when the HDL cosimulation system object is destroyed in MATLAB.
Close the HDL simulator session manually.

clear hDec;

% This concludes the "Verify Viterbi Decoder Using MATLAB System Object and
% HDL Simulator".

See Also
Cosimulation Wizard | HDL Cosimulation

Topics
“Create a MATLAB System Object”

Introduced in R2012b

 hdlverifier.HDLCosimulation

2-17

Functions

3

breakHdlSim
Execute stop command in HDL simulator from MATLAB

Syntax
breakHdlSim()
breakHdlSim(portNumber)
breakHdlSim(portNumber,hostName)

Description
breakHdlSim() executes the stop command on the HDL simulator on the local host. Use this
function to:

• Unblock the HDL simulator after it loads the simulation and before Simulink starts the simulation.
• Unblock the HDL simulator to add more signals to the waveform window when the simulation is in

progress.

When you use breakHdlSim, you must specify the current connection information to the HDL
simulator.

breakHdlSim(portNumber) executes the stop command in the HDL simulator on the port
portNumber.

breakHdlSim(portNumber,hostName) executes the stop command in the HDL simulator on the
host hostName.

Examples
Execute Stop Command in HDL Simulator from MATLAB

Stop the HDL simulator that is running on the local host.

>> breakHdlSim()

Stop the HDL simulator that is running on port 1234.

>> breakHdlSim('1234')

Stop the HDL simulator that is running on port 1234 and host mylinux.

>> breakHdlSim('1234','mylinux')

Input Arguments
portNumber — Port number to connect
character vector | string scalar

Port number to connect, specified as a character vector or string scalar. The HDL simulator attempts
to connect to a host on the specified port number.

3 Functions

3-2

Data Types: char | string

hostName — Name of host to connect
character vector | string scalar

Name of the host to connect, specified as a character vector or string scalar.
Data Types: char | string

See Also
hdldaemon | pingHdlSim | vsim

Topics
“Run a Simulink Cosimulation Session”

Introduced in R2008a

 breakHdlSim

3-3

Cosimulation Wizard
Generate a cosimulation block or System object from existing HDL files

Description
Run your HDL design as part of a Simulink model, or MATLAB script. The Cosimulation Wizard
generates a cosimulation block, System object, or callback function that compiles the HDL code and
launches the HDL simulator.

Open the Cosimulation Wizard App
• Simulink Toolstrip: In the Apps tab, under Verification, Validation and Test, click the Cosim

Wizard icon.
• MATLAB command prompt: Enter cosimWizard.

Examples
• “Verify Raised Cosine Filter Design Using MATLAB”
• “Verify Raised Cosine Filter Design Using Simulink”

See Also
Topics
“Verify Raised Cosine Filter Design Using MATLAB”
“Verify Raised Cosine Filter Design Using Simulink”
“Import HDL Code for MATLAB Function”
“Import HDL Code for MATLAB System Object”
“Import HDL Code for HDL Cosimulation Block”

Introduced in R2012b

3 Functions

3-4

dec2mvl
Convert decimal to binary character vector

Syntax
bits = dec2mvl(d)
bits = dec2mvl(d,n)

Description
bits = dec2mvl(d) converts the decimal integer d to a binary character vector bits. d must be
an integer smaller than 252.

bits = dec2mvl(d,n) returns a binary character vector with at least n bits.

Examples

Convert Decimal Integers to Multivalued Logic

Find the multivalued logic vector for a positive decimal integer.

bits = dec2mvl(23)

bits =
'10111'

Find the multivalued logic vector for a negative decimal integer.

bits = dec2mvl(-23)

bits =
'101001'

Find the multivalued logic vector for a negative decimal integer. Specify the minimum number of bits
to be returned at the output.

bits = dec2mvl(-23,8)

bits =
'11101001'

Input Arguments
d — Decimal number to be converted
decimal integer

Decimal number to convert, specified as a decimal integer.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

 dec2mvl

3-5

n — Minimum number of bits to return
nonnegative integer

Minimum number of bits to return, specified as a nonnegative integer.

If n is greater than the number of bits required to represent b, the remaining (n–b) upper bits in the
output are padded with:

• 0s if input d is a nonnegative integer
• 1s if input d is a negative integer

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

See Also
mvl2dec

Introduced in R2008a

3 Functions

3-6

dpigen
Generate SystemVerilog DPI component from MATLAB function

Syntax
dpigen fcn -args args
dpigen fcn -args args -testbench tb_name -options options files -c -
launchreport -FixedpointDataType type

Description
dpigen fcn -args args generates a SystemVerilog DPI component shared library from MATLAB
function fcn and all the functions that fcn calls. It also generates a SystemVerilog package file,
which contains the function declarations.

The argument —args args specifies the type of inputs the generated code can accept. The
generated DPI component is specialized to the class and size of the inputs. Using this information,
dpigen generates a DPI component that emulates the behavior of the MATLAB function.

fcn and —args args are required input arguments. The MATLAB function must be on the MATLAB
path or in the current folder.

dpigen fcn -args args -testbench tb_name -options options files -c -
launchreport -FixedpointDataType type generates a SystemVerilog DPI component shared
library according to the options specified. You can specify zero or more optional arguments, in any
order.

• -testbench tb_name also generates a test bench for the SystemVerilog DPI component. The
MATLAB test bench must be on the MATLAB path or in the current folder.

• -options options specifies additional options for the compiler and code generation.
• files specifies custom files to include in the generated code.
• -c generates C code only.
• -launchreport generates and opens a code generation report.
• -FixedpointDataType specifies the SystemVerilog data type to use for fixed-point type ports.

When generating a DPI component, it creates a shared library specific to that host platform. For
instance if you use 64-bit MATLAB on Windows®, you get a 64-bit DLL, which can be used only with a
64-bit HDL simulator in Windows. For porting the generated component from Windows to Linux®, see
“Port Generated Component and Test Bench to Linux”.

Examples

Generate DPI Component and Test Bench

Generate a DPI component and test bench for the function fun.m and its associated test bench,
fun_tb.m. The dpigen function compiles the component automatically using the default compiler.
The -args option specifies that the first input type is a double and the second input type is an int8.

 dpigen

3-7

dpigen -testbench fun_tb.m -I E:\HDLTools\ModelSim\10.2c-mw-0\questa_sim\include fun.m
 -args {double(0),int8(0)}

Generating DPI-C Wrapper fun_dpi.c
Generating DPI-C Wrapper header file fun_dpi.h
Generating SystemVerilog module package fun_dpi_pkg.sv
Generating SystemVerilog module fun_dpi.sv
Generating makefiles for: fun_dpi
Compiling the DPI Component
Generating SystemVerilog test bench fun_tb.sv
Generating test bench simulation script for Mentor Graphics QuestaSim/Modelsim run_tb_mq.do
Generating test bench simulation script for Cadence Incisive run_tb_incisive.sh
Generating test bench simulation script for Cadence Xcelium run_tb_xcelium.sh
Generating test bench simulation script for Synopsys VCS run_tb_vcs.sh
Generating test bench simulation script for Vivado Simulator run_tb_vivado.bat

Generate DPI Component and Test Bench Without Compiling

Generate a DPI component and a test bench for the function fun.m and its associated test bench,
fun_tb.m. To prevent the dipgen function from compiling the library, include the -c option. Send
the source code output to 'MyDPIProject'.
dpigen -c -d MyDPIProject -testbench fun_tb.m fun.m -args {double(0),int8(0)}

Generating DPI-C Wrapper fun_dpi.c
Generating DPI-C Wrapper header file fun_dpi.h
Generating SystemVerilog module package fun_dpi_pkg.sv
Generating SystemVerilog module fun_dpi.sv
Generating makefiles for: fun_dpi
Generating SystemVerilog test bench fun_tb.sv
Generating test bench simulation script for Mentor Graphics ModelSim/QuestaSim run_tb_mq.do
Generating test bench simulation script for Cadence Incisive run_tb_incisive.sh
Generating test bench simulation script for Cadence Xcelium run_tb_xcelium.sh
Generating test bench simulation script for Synopsys VCS run_tb_vcs.sh
Generating test bench simulation script for Vivado Simulator run_tb_vivado.bat

Input Arguments
fcn — Name of MATLAB function
character vector | string scalar

Name of MATLAB function to generate the DPI component from, specified as a character vector or
string scalar. The MATLAB function must be on the MATLAB path or in the current folder.

-args args — Data type and size of MATLAB function inputs
cell array

Data type and size of MATLAB function inputs, specified as a cell array. Specify the input types that
the generated DPI component accepts. args is a cell array specifying the type of each function
argument. Elements are converted to types using coder.typeof. This argument is required.

This argument has the same functionality as the codegen function argument args. args applies only
to the function, fcn.
Example: -args {double(0),int8(0)}

-testbench tb_name — MATLAB test bench used to generate test bench for generated DPI
component
character vector | string scalar

MATLAB test bench used to generate test bench for generated DPI component, specified as a
character vector or string scalar. The dpigen function uses this test bench to generate a

3 Functions

3-8

SystemVerilog test bench along with data files and execution scripts. The MATLAB test bench must be
on the MATLAB path or in the current folder.
Example: -testbench My_Test_bench.m

-options — Compiler and code generation options
character vector | string scalar

Compiler and codegen options, specified as a character vector or string scalar. These options are a
subset of the options for codegen. The dpigen function gives precedence to individual command-line
options over options specified using a configuration object. If command-line options conflict, the
right-most option prevails.

You can specify zero or more optional arguments, in any order. For example:

dpigen -c -d MyDPIProject -testbench fun_tb.m fun.m -args {double(0),int8(0)}
-launchreport

Option flag Option value
-I include_path Specifies the path to folders containing headers and library

files needed for codegen, specified as a character vector or
string scalar. Add include_path to the beginning of the
code generation path.

For example:

-I E:\HDLTools\ModelSim\10.2c-mw-0\questa_sim
\include

include_path must not contain spaces, which can lead to
code generation failures in certain operating system
configurations. If the path contains non 7-bit ASCII
characters, such as Japanese characters, dpigen might not
find files on this path.

When converting MATLAB code to C/C++ code, dpigen
searches the code generation path first.

Alternatively, you can specify the include path with the
files input argument.

 dpigen

3-9

Option flag Option value
-config config Specify a custom configuration object using

coder.config('dll'). The DPI component must be a
shared library.

To avoid using conflicting options, do not combine a
configuration object with command-line options. Usually the
config object offers more options than the command-line
flags.

Note Not all the options in the config object are
compatible with the DPI feature. If you try to use an
incompatible option, an error message informs you of which
options are not compatible.

-o output Specify the name of the generated component as a character
vector or string scalar. The dpigen function adds a platform-
specific extension to this name for the shared library.

-d dir Specify the output folder. All generated files are placed in
dir. By default, files are placed in ./codegen/dll/
<function>.

For example, when dpigen compiles the function fun.m, the
generated code is placed in ./codegen/dll/fun.

-globals globals Specify initial values for global variables in MATLAB files.
The global variables in your function are initialized to the
values in the cell array GLOBALS. The cell array provides the
name and initial value of each global variable.

If you do not provide initial values for global variables using
the -globals option, dpigen checks for the variables in the
MATLAB global workspace. If you do not supply an initial
value, dpigen generates an error.

MATLAB Coder and MATLAB each have their own copies of
global data. For consistency, synchronize their global data
whenever the two products interact. If you do not
synchronize the data, their global variables might differ.

files — Custom files to include in the generated code
character vector | string scalar

Custom files to include in the generated code, each file specified as a character vector or string
scalar. The files build along with the MATLAB function specified by fcn. List each file separately,
separated by a space. The following extensions are supported.

File Type Description
.c Custom C file
.cpp Custom C++ file
.h Custom header file (included by all generated files)

3 Functions

3-10

File Type Description
.o Object file
.obj Object file
.a Library file
.so Library file
.lib Library file

In Windows, if your MATLAB function contains matrix or vector output or input arguments, use the
files option to specify the library (.lib) that contains the ModelSim DPI definitions. Otherwise,
you must manually modify the generated Makefile (*.mk) and then compile the library separately.

-c — Option to generate C code only
character vector | string scalar

Option to generate C code without compiling the DPI component, specified as the character vector -
c. If you do not use the -c option, dpigen tries to compile the DPI component using the default
compiler. To select a different compiler, use the -config option and refer to the codegen
documentation for instructions on specifying the different options.

-launchreport — Option to generate and open a code generation report
character vector | string scalar

Option to generate and open a code generation report, specified as the character vector -
launchreport.

-FixedpointDataType — generated SystemVerilog data type for fixed-point ports
Compatible C Type | Bit Vector | Logic Vector

Select the SystemVerilog data type that will be used for ports that have fixed-point data. Choose from
three possible values:

• CompatibleCType – Generate a compatible C type interface for the port.
• BitVector – Generate a bit vector type interface for the port.
• LogicVector – Generate a logic vector type interface for the port.

See Also
codegen

Introduced in R2014b

 dpigen

3-11

FPGA-in-the-Loop Wizard
Generate an FPGA-in-the-loop (FIL) block or System object from existing HDL files

Description
FPGA-in-the-loop (FIL) enables you to run a Simulink or MATLAB simulation that is synchronized with
an HDL design running on an Xilinx®, Microsemi®, or Altera® FPGA board.

This link between the simulator and the board enables you to:

• Verify HDL implementations directly against algorithms in Simulink or MATLAB.
• Apply data and test scenarios from Simulink or MATLAB to the HDL design on the FPGA.
• Integrate existing HDL code with models under development in Simulink or MATLAB.

Open the FPGA-in-the-Loop Wizard App
• Simulink Toolstrip: In the Apps tab, under Verification, Validation and Test, click the FIL

Wizard icon.
• MATLAB command prompt: Enter filWizard. You provide the HDL code and all related

information for creating a FIL block for simulation with an FPGA device.

Examples
• “Block Generation with the FIL Wizard”
• “System Object Generation with the FIL Wizard”

Programmatic Use
filWizard(filename) relaunches the FIL Wizard using a configuration file from a previous
session. At the end of each FIL Wizard session, the tool saves a MAT-file that contains the session
information. You can use this MAT-file to restore the session later.

See Also
Topics
“Block Generation with the FIL Wizard”
“System Object Generation with the FIL Wizard”
“FPGA-in-the-Loop Simulation”
“FPGA-in-the-Loop Simulation Workflows”

Introduced in R2012b

3 Functions

3-12

hdldaemon
Control MATLAB server that supports interactions with HDL simulator

Syntax
hdldaemon
hdldaemon(Name,Value)
hdldaemon(Option)

s=hdldaemon(___)

Description
hdldaemon starts the HDL Link MATLAB server using shared memory inter-process communication.
Only one hdldaemon per MATLAB session can be running at any given time.

hdldaemon(Name,Value) uses additional options specified by one or more Name,Value pair
arguments.

• If you do not specify memory type, the server starts using shared memory.
• If you specify the socket Name, Value argument, the server starts using socket memory.

Note If server is already running, issuing hdldaemon with these arguments shuts down the current
server and then starts a new server session using shared memory (unless socket is specified).

hdldaemon(Option) accepts a single optional input. Only one option may be specified in a single
call. You must establish the server connection before calling hdldaemon with one of these options.

s=hdldaemon(___) returns the server status connection in structure s, using any of the input
arguments in the previous syntaxes.

Examples

Start MATLAB Server With Shared Memory

Start the MATLAB server using shared memory communication and use an integer representation of
time.

hdldaemon('time','int64')

HDLDaemon shared memory server is running with 0 connections

Start MATLAB Server With Socket Communication

Start MATLAB server and specify socket communication on port 4449.

 hdldaemon

3-13

hdldaemon('socket',4449)

HDLDaemon socket server is running on port 4449 with 0 connections

Check Server Status

With one or more connections:

hdldaemon('status')

HDLDaemon socket server is running on port 4449 with 1 connections

With no connections:

hdldaemon('status')

HDLDaemon shared memory server is running with 0 connections

Server has not been started:

hdldaemon('status')

HDLDaemon is NOT running

Check Connection Information

Check connection information for communication mode, number of existing connections, and the
interprocess communication identifier (ipc_id) the MATLAB server is using for a link.

Returned message for a socket connection:

x=hdldaemon('status')

x =
 comm: 'sockets'
 connections: 0
 ipc_id: '4449'

Returned message for a shared memory connection:

x=hdldaemon('status')

x =
 comm: 'shared memory'
 connections: 0
 ipc_id: '\\.\pipe\E505F434-F023-42a6-B06D-DEFD08434C67'

You can examine ipc_id by entering it at the MATLAB command prompt:

x.ipc_id

 '\\.\pipe\E505F434-F023-42a6-B06D-DEFD08434C67'

3 Functions

3-14

Shut Down Server

Shut down server without shutting down MATLAB.

hdldaemon('kill')

HDLDaemon server was shutdown

Issue Tcl Commands

Issue simple or complex Tcl commands.

Simple example:

hdldaemon('tclcmd','puts "This is a test"')

Complex example:
tclcmd = {['cd ',unixprojdir],...
 'vlib work',... % create library (if applicable)
 ['vcom -performdefaultbinding ' unixsrcfile1],...
 ['vcom -performdefaultbinding ' unixsrcfile2],...
 ['vcom -performdefaultbinding ' unixsrcfile3],...
 'vsimmatlab work.osc_top ',...
 'matlabcp u_osc_filter -mfunc oscfilter',...
 'add wave sim:/osc_top/clk',...
 'add wave sim:/osc_top/clk_enable',...
 'add wave sim:/osc_top/reset',...
 ['add wave -height 100 -radix decimal -format analog-step -scale 0.001 -offset 50000 ',...
 'sim:/osc_top/osc_out'],...
 ['add wave -height 100 -radix decimal -format analog-step -scale 0.00003125 -offset 50000 ',...
 'sim:/osc_top/filter1x_out'],...
 ['add wave -height 100 -radix decimal -format analog-step -scale 0.00003125 -offset 50000 ',...
 'sim:/osc_top/filter4x_out'],...
 ['add wave -height 100 -radix decimal -format analog-step -scale 0.00003125 -offset 50000 ',...
 'sim:/osc_top/filter8x_out'],...
 'force sim:/osc_top/clk_enable 1 0',...
 'force sim:/osc_top/reset 1 0, 0 120 ns',...
 'force sim:/osc_top/clk 1 0 ns, 0 40 ns -r 80ns',...
 };

This example is taken from "Implementing the Filter Component of an Oscillator in MATLAB". See the
full example for use of this complex Tcl command in context.

Input Arguments
Option — Server option to shut down MATLAB server or display server status
'kill' | 'stop' | 'status'

Server option to shut down MATLAB server or display server status, specified as one of these
character vectors:

'kill' Shuts down the MATLAB server without shutting
down MATLAB.

'stop' Shuts down the MATLAB server without shutting
down MATLAB. There is no difference between
using 'kill' and 'stop'.

 hdldaemon

3-15

'status' Displays status of the MATLAB server. You can
also use s=hdldaemon('status'), which
displays MATLAB server status and returns status
in structure s.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: 'time','int64','quiet','true' specifies time values are returned as 64-bit integers
and output messages are suppressed.

time — Instruction to MATLAB server on how it should send and return time values
'sec' (default) | 'int64'

Instruction to MATLAB server on how it should send and return time values, specified as the comma-
separated pair consisting of 'time' and one of these values:

'int64' Specifies that the MATLAB server send and return time values in the MATLAB
function callbacks as 64-bit integers representing the number of simulation
steps.
See the matlabcp/matlabtb tnow parameter reference (“MATLAB Function
Syntax and Function Argument Definitions”).

'sec' Specifies that the MATLAB server sends and returns time values in the
MATLAB function callbacks as double values that HDL Verifier scales to
seconds based on the current HDL simulation resolution.

If server is already running, issuing hdldaemon with the time parameter alone will shut down the
current server and start the server up again using shared memory.
Example: 'time','int64'

quiet — Indicator to suppress printing diagnostic messages
'false' (default) | 'true'

Indicator to suppress printing diagnostic messages, specified as the comma-separated pair consisting
of 'quiet' and one of the following values:

'true' Suppress printing diagnostic messages.
'false' Do not suppress printing diagnostic messages.

Errors still appear. Use this option to suppress the MATLAB server shutdown message when using
hdldaemon to get an unused socket number. If server is already running, issuing hdldaemon with
the quiet parameter alone will shut down the current server and start the server up again using
shared memory.
Example: 'quiet', 'true'

socket — TCP/IP port used for communication
0 | port number | character vector alias

TCP/IP port used for communication, specified as the comma-separated pair consisting of 'socket'
and a value. The value can be either 0, indicating that the host automatically chooses a valid TCP/IP

3 Functions

3-16

port, an explicit port number (1024 < port < 49151) or a service (alias) name from /etc/services
file.

If you specify the operating system option (0), use hdldaemon('status') to acquire the assigned
socket port number.
Example: 'socket',4449

tclcmd — Tcl command transmitted to all connected clients
character vector | string scalar

Tcl command transmitted to all connected clients, specified as any valid Tcl command character
vector or string scalar.

The Tcl command you specify cannot include commands that load an HDL simulator project or modify
simulator state. For example, the character vector cannot include commands such as start, stop, or
restart (for ModelSim) or run, stop, or reset (for Incisive).

Note You can issue this command only after the software establishes a server connection.

Caution Do not call hdldaemon('tclcmd', 'Tcl command') from inside a matlabtb or
matlabcp function. Doing so results in a race condition, and the simulator hangs.

Example: 'tclcmd','puts' '"done"'

Output Arguments
s — Structure containing information about the connection
'comm' | 'connections' | 'ipc_id'

Structure containing information about the connection. The structure contains the following
variables:

'comm' Either 'shared memory' or 'sockets'
'connections' Number of open connections
'ipc_id' If shared memory, file system name for the shared memory

communication channel. If socket, the TCP/IP port number.

See Also
nclaunch | vsim

Topics
“Implementing the Filter Component of an Oscillator in MATLAB®”
“Start the HDL Simulator from MATLAB”

Introduced in R2008a

 hdldaemon

3-17

hdlsimmatlab
Load instantiated HDL design for verification with Cadence Incisive and MATLAB

Syntax
hdlsimmatlab <instance> [<ncsim_args>]

Description
The hdlsimmatlab command loads the specified instance of an HDL design for verification and sets
up the Cadence Incisive simulator so it can establish a communication link with MATLAB. The
Cadence Incisive simulator opens a simulation workspace as it loads the HDL design.

This command may be run from the HDL simulator prompt or from a Tcl script shell (tclsh).

This command is issued in the HDL simulator.

Arguments
<instance>

Specifies the instance of an HDL design to load for verification.
<ncsim_args>

Specifies one or more ncsim command arguments. For details, see the description of ncsim in
the Cadence Incisive simulator documentation.

Examples
The following command loads the module instance parse from library work for verification and sets
up the Cadence Incisive simulator so it can establish a communication link with MATLAB:

tclshell> hdlsimmatlab work.parse

Introduced in R2008a

3 Functions

3-18

hdlsimmatlabsysobj
Load instantiated HDL module for cosimulation with Cadence Incisive and MATLAB System object

Syntax
hdlmatlabsysobj instance
hdlmatlabsysobj instance <ncsim_args>
hdlmatlabsysobj instance -socket tcp_spec <ncsim_args>

Description

Note Issue this command in Cadence Incisive, not in MATLAB.

hdlmatlabsysobj instance loads the specified instance of the HDL design for cosimulation and
sets up Cadence Incisive so it can establish a shared communication link with a MATLAB System
object. Cadence Incisive opens a simulation workspace and displays a series of messages in the
command window as it loads the HDL module packages and architectures.

To generate the hdlmatlabsysobj function, you must first invoke the vsim function in MATLAB.

hdlmatlabsysobj instance <ncsim_args> uses additional Incisive command line arguments.

hdlmatlabsysobj instance -socket tcp_spec <ncsim_args> loads the specified instance of
the HDL design for cosimulation and sets up Cadence Incisive so it can establish a shared
communication link with a MATLAB System object. Cadence Incisive opens a simulation workspace
and displays a series of messages in the command window as it loads the HDL module packages and
architectures.

To generate the hdlmatlabsysobj function, you must first invoke the vsim function in MATLAB.

Examples

Load Instantiated HDL Model for Cosimulation with MATLAB System object

In Incisive, load the HDL module instance parse from the library work, and establish communication
with MATLAB System object.

 tclshell> hdlsimmatlabsysobj -gui work.parse

Input Arguments
instance — Instance of HDL module to load for cosimulation
HDL instance name, as required by Cadence Incisive

Instance of the HDL module to load for cosimulation.

 hdlsimmatlabsysobj

3-19

ncsim_args — ncsim command arguments
ncsim command arguments

ncsim command arguments, as required by Cadence Incisive. For details, see the description of
ncsim in the Incisive documentation.

tcp_spec — TCP/IP socket communication
TCP/IP port number | TCP/IP service name | internet address

TCP/IP socket communication for the link between Incisive and MATLAB, specified as a TCP/IP port
name or service name. If the MATLAB server is running on a remote host, you must also specify the
name or internet address of the remote host. When this input argument is not specified, the function
uses shared memory communication. This setting overrides the setting specified with the MATLAB
vsim function.

See Also
hdlsimmatlab | hdlsimulink | nclaunch

Introduced in R2012b

3 Functions

3-20

hdlsimulink
Load instantiated HDL module for cosimulation with Cadence Incisive and Simulink

Syntax
hdlsimulink instance -socket tcp_spec <ncsim_args>

Description

Note Issue this command in Cadence Incisive, not in MATLAB.

hdlsimulink instance -socket tcp_spec <ncsim_args> loads the specified instance of HDL
design for cosimulation and sets up the Cadence Incisive simulator so it can establish a shared
communication link with Simulink. The Cadence Incisive simulator opens a simulation workspace into
which it loads the HDL design.

To generate the hdlsimulink function, you must first invoke the nclaunch function in MATLAB.

Examples
Load Instantiated HDL Model for Cosimulation with Simulink

In Cadence Incisive, load the HDL module instance parse from the library work. This action also
establishes communication with Simulink and opens a Tcl script shell.

tclshell> hdlsimulink -gui work.parse

Input Arguments
instance — Instance of HDL design
HDL instance name, as required by Cadence Incisive

Instance of HDL design to load for cosimulation.

ncsim_args — ncsim command arguments
Cadence Incisive command arguments

Specify one or more ncsim command line arguments. Do not use -GUI, -BATCH, or -TCL. For details,
see the description of ncsim in the Cadence Incisive simulator documentation.

tcp_spec — TCP/IP socket communication
TCP/IP port number | TCP/IP service name | internet address

TCP/IP socket communication for the link between Cadence Incisive and Simulink, specified as a
TCP/IP port name or service name. If the MATLAB server is running on a remote host, you must also
specify the name or internet address of the remote host. When this input argument is not specified,
the function uses shared memory communication. This setting overrides the setting specified with the
MATLAB nclaunch function.

 hdlsimulink

3-21

See Also
nclaunch | vsimulink

Introduced in R2008a

3 Functions

3-22

matlabcp
Associate MATLAB component function with instantiated HDL design

Syntax
matlabcp <instance>
[<time-specs>]
[-socket <tcp-spec>]
[-rising <port>[,<port>...]]
[-falling <port> [,<port>,...]]
[-sensitivity <port>[,<port>,...]]
[-mfunc <name>]
[-use_instance_obj]
[-argument]

Description
The matlabcp command has the following characteristics:

• Starts the HDL simulator client component of the HDL Verifier software.
• Associates a specified instance of an HDL design created in the HDL simulator with a MATLAB

function.
• Creates a process that schedules invocations of the specified MATLAB function.
• Cancels any pending events scheduled by a previous matlabcp command that specified the same

instance. For example, if you issue the command matlabcp for instance foo, all previously
scheduled events initiated by matlabcp on foo are canceled.

This command is issued in the HDL simulator.

MATLAB component functions simulate the behavior of modules in the HDL model. A stub module
(providing port definitions only) in the HDL model passes its input signals to the MATLAB component
function. The MATLAB component processes this data and returns the results to the outputs of the
stub module. A MATLAB component typically provides some functionality (such as a filter) that is not
yet implemented in the HDL code. See “Create a MATLAB Component Function”.

Notes The communication mode that you specify for matlabcp must match the communication
mode you specified for hdldaemon when you established the server connection.

For socket communications, specify the port number you selected for hdldaemon when you issue a
link request with the matlabcp command in the HDL simulator.

Arguments
<instance>

Specifies an instance of an HDL design that is associated with a MATLAB function. By default,
matlabcp associates the instance to a MATLAB function that has the same name as the instance.
For example, if the instance is myfirfilter, matlabcp associates the instance with the
MATLAB function myfirfilter (note that hierarchy names are ignored; for example, if your

 matlabcp

3-23

instance name is top.myfirfilter, matlabcp would associate only myfirfilter with the
MATLAB function). Alternatively, you can specify a different MATLAB function with -mfunc.

Note Do not specify an instance of an HDL module that has already been associated with a
MATLAB function (via matlabcp or matlabtb). If you do, the new association overwrites the
existing one.

<time-specs>
Specifies a combination of time specifications consisting of any or all of the following:

<timen>,... Specifies one or more discrete time values at which the HDL simulator
calls the specified MATLAB function. Each time value is relative to the
current simulation time. Even if you do not specify a time, the HDL
simulator calls the MATLAB function once at the start of the simulation.
Separate multiple time values by a space.

For example:
matlabtb vlogtestbench_top 10 ns, 10 ms, 10 sec

The MATLAB function executes when time equals 0 and then 10
nanoseconds, 10 milliseconds, and 10 seconds from time zero.

Note For time-based parameters, you can specify any standard time
units (ns, us, and so on). If you do not specify units, the command
treats the time value as a value of HDL simulation ticks.

-repeat <time> Specifies that the HDL simulator calls the MATLAB function repeatedly
based on the specified <timen>,... pattern. The time values are
relative to the value of tnow at the time the HDL simulator first calls
the MATLAB function.

-cancel <time> Specifies a time at which the specified MATLAB function stops
executing. The time value is relative to the value of tnow at the time
the HDL simulator first calls the MATLAB function. If you do not
specify a cancel time, the application calls the MATLAB function until
you finish the simulation, quit the session, or issue a nomatlabtb call.

Note The -cancel option works only with the <time-specs>
arguments. It does not affect any of the other scheduling arguments for
matlabcp.

Note Place time specifications after the matlabcp instance and before any additional command
arguments; otherwise the time specifications are ignored.

All time specifications for the matlabcp functions appear as a number and, optionally, a time
unit:

• fs (femtoseconds)

3 Functions

3-24

• ps (picoseconds)
• ns (nanoseconds)
• us (microseconds)
• ms (milliseconds)
• sec (seconds)
• no units (tick)

-socket <tcp_spec>
Specifies that HDL Verifier use TCP/IP sockets to communicate between the HDL simulator and
MATLAB. Shared memory is the default mode of communication and takes effect if you do not
specify -socket <tcp_spec> on the command line. The communication mode that you specify
with the matlabcp command must match the communication mode that you issued with the
hdldaemon command.

-rising <signal>[, <signal>...]
Indicates that the application calls the specified MATLAB function on the rising edge (transition
from '0' to '1') of any of the specified signals. Specify -rising with the path names of one or
more signals defined as a logic type (STD_LOGIC, BIT, X01, and so on).

For determining signal transition in:

• VHDL: Rising edge is {0 or L} to {1 or H}.
• Verilog: Rising edge is the transition from 0 to x, z, or 1, and from x or z to 1.

Note When specifying signals with the -rising, -falling, and -sensitivity options,
specify them in full path name format. If you do not specify a full path name, the command
applies the HDL simulator rules to resolve signal specifications.

-falling <signal>[, <signal>...]
Indicates that the application calls the specified MATLAB function whenever any of the specified
signals experiences a falling edge—changes from '1' to '0'. Specify -falling with the path
names of one or more signals defined as a logic type (STD_LOGIC, BIT, X01, and so on).

For determining signal transition in:

• VHDL: Falling edge is {1 or H} to {0 or L}.
• Verilog: Falling edge is the transition from 1 to x, z, or 0, and from x or z to 0.

Note When specifying signals with the -rising, -falling, and -sensitivity options,
specify them in full path name format. If you do not specify a full path name, the command
applies the HDL simulator rules to resolve signal specifications.

-sensitivity <signal>[, <signal>...]
Indicates that the application calls the specified MATLAB function whenever any of the specified
signals changes state. Specify -sensitivity with the path names of one or more signals.
Signals of any type can appear in the sensitivity list and can be positioned at any level in the HDL
model hierarchy.

 matlabcp

3-25

Note When specifying signals with the -rising, -falling, and -sensitivity options,
specify them in full path name format. If you do not specify a full path name, the command
applies the HDL simulator rules to resolve signal specifications.

-mfunc <name>
The name of the MATLAB function that is associated with the HDL module instance you specify
for instance. By default, the HDL Verifier software invokes a MATLAB function that has the
same name as the specified HDL instance. Thus, if the names are the same, you can omit the -
mfunc option. If the names are not the same, use this argument when you call matlabcp. If you
omit this argument and matlabcp does not find a MATLAB function with the same name, the
command generates an error message.

-use_instance_obj
Instructs the function specified with the argument -mfunc to use an HDL instance object passed
by HDL Verifier to the function. This argument has the fields shown in the following table. See
“Writing Functions Using the HDL Instance Object” for examples.

Field Read/Write
Access

Description

tnext Write only Used to schedule a callback during the set time value. This field is
equivalent to old tnext. For example:
hdl_instance_obj.tnext = hdl_instance_obj.tnow + 5e-9

will schedule a callback at time equals 5 nanoseconds from tnow.
userdata Read/Write Stores state variables of the current matlabcp instance. You can

retrieve the variables the next time the callback of this instance is
scheduled.

simstatus Read only Stores the status of the HDL simulator. The HDL Verifier software sets
this field to 'Init' during the first callback for this particular
instance and to 'Running' thereafter. simstatus is a read-only
property.

>> hdl_instance_obj.simstatus

ans=
 Init

instance Read only Stores the full path of the Verilog/VHDL instance associated with the
callback. instance is a read-only property. The value of this field
equals that of the module instance specified with the function call. For
example:

In the HDL simulator:
hdlsim> matlabcp osc_top -mfunc oscfilter use_instance_obj

In MATLAB:

>> hdl_instance_obj.instance

ans=
 osc_top

3 Functions

3-26

Field Read/Write
Access

Description

argument Read only Stores the argument set by the -argument option of matlabcp. For
example:
matlabtb osc_top -mfunc oscfilter -use_instance_obj -argument foo

The link software supports the -argument option only when it is used
with -use_instance_obj, otherwise the argument is ignored.
argument is a read-only property.

>> hdl_instance_obj.argument

ans=
 foo

portinfo Read only Stores information about the VHDL and Verilog ports associated with
this instance. portinfo is a read-only property, which has a field
structure that describes the ports defined for the associated HDL
module. For each port, the portinfo structure passes information
such as the port’s type, direction, and size. For more information on
port data, see “Gaining Access to and Applying Port Information”.
hdl_instance_obj.portinfo.field1.field2.field3

Note When you use use_instance_obj, you access tscale
through the HDL instance object. If you do not use
use_instance_obj, you can still access tscale through portinfo.

tscale Read only Stores the resolution limit (tick) in seconds of the HDL simulator.
tscale is a read-only property.

>> hdl_instance_obj.tscale

ans=
 1.0000e-009

Note When you use use_instance_obj, you access tscale
through the HDL instance object. If you do not use
use_instance_obj, you can still access tscale through portinfo.

tnow Read only Stores the current time. tnow is a read-only property.
hdl_instance_obj.tnext = hld_instance_obj.tnow + fastestrate;

portvalues Read/Write Stores the current values of and sets new values for the output and
input ports for a matlabcp instance. For example:

>> hdl_instance_obj.portvalues

ans =
Read Only Input ports:
 clk_enable: []
 clk: []
 reset: []
Read/Write Output ports:
 sine_out: [22x1 char]

 matlabcp

3-27

Field Read/Write
Access

Description

linkmode Read only Stores the status of the callback. The HDL Verifier software sets this
field to 'testbench' if the callback is associated with matlabtb and
'component' if the callback is associated with matlabcp. linkmode
is a read-only property.

>> hdl_instance_obj.linkmode

ans=
 component

-argument
Used to pass user-defined arguments from the matlabcp invocation on the HDL side to the
MATLAB function callbacks. Supported with -use_instance_obj only. See the field listing
under the -use_instance_obj property.

Examples
The following examples demonstrate some ways you might use the matlabcp function.

Using matlabcp with the -mfunc option to Associate an HDL Component with a MATLAB
Function of a Different Name

This example explicitly associates the Verilog module vlogtestbench_top.u_matlab_component
with the MATLAB function vlogmatlabc using the -mfunc option. The '-socket' option specifies
using socket communication on port 4449.
hdlsim>matlabcp vlogtestbench_top.u_matlab_component -mfunc vlogmatlabc -socket 4449

Using matlabcp with Explicit Times and the -cancel Option

This example includes explicit times with the -cancel option.
hdlsim>matlabcp vlogtestbench_top 1e6 fs 3 2e3 ps -repeat 3 ns -cancel 7ns

Using matlabcp with Rising and Falling Edges

This example implicitly associates the Verilog module, vlogtestbench_top, with the MATLAB
function vlogtestbench_top, and also uses rising and falling edges.
hldsim> matlabcp vlogtestbench_top 1 2 3 4 5 6 7 -rising outclk3
 -falling u_matlab_component/inoutclk

Introduced in R2008a

3 Functions

3-28

matlabtb
Schedule MATLAB test bench session for instantiated HDL module

Syntax
matlabtb <instance>
[<time-specs>]
[-socket <tcp-spec>]
[-rising <port>[,<port>...]]
[-falling <port> [,<port>,...]]
[-sensitivity <port>[,<port>,...]]
[-mfunc <name>]
[-use_instance_obj]
[-argument]

Description
The matlabtb command has the following characteristics:

• Starts the HDL simulator client component of the HDL Verifier software.
• Associates a specified instance of an HDL design created in the HDL simulator with a MATLAB

function.
• Creates a process that schedules invocations of the specified MATLAB function.
• Cancels any pending events scheduled by a previous matlabtb command that specified the same

instance. For example, if you issue the command matlabtb for instance foo, all previously
scheduled events initiated by matlabtb on foo are canceled.

This command is issued in the HDL simulator.

MATLAB test bench functions mimic stimuli passed to entities in the HDL model. You force stimulus
from MATLAB or HDL scheduled with matlabtb.

Notes The communication mode that you specify for matlabtb must match the communication
mode you specified for hdldaemon when you established the server connection.

For socket communications, specify the port number you selected for hdldaemon when you issue a
link request with the matlabtb command in the HDL simulator.

Arguments
<instance>

Specifies the instance of an HDL module that the HDL Verifier software associates with a
MATLAB test bench function. By default, matlabtb associates the instance with a MATLAB
function that has the same name as the instance. For example, if the instance is myfirfilter,
matlabtb associates the instance with the MATLAB function myfirfilter (note that hierarchy
names are ignored; for example, if your instance name is top.myfirfilter, matlabtb would
associate only myfirfilter with the MATLAB function). Alternatively, you can specify a
different MATLAB function with -mfunc.

 matlabtb

3-29

Note Do not specify an instance of an HDL module that has already been associated with a
MATLAB function (via matlabcp or matlabtb). If you do, the new association overwrites the
existing one.

<time-specs>
Specifies a combination of time specifications consisting of any or all of the following:

<timen>,... Specifies one or more discrete time values at which the HDL simulator
calls the specified MATLAB function. Each time value is relative to the
current simulation time. Even if you do not specify a time, the HDL
simulator calls the MATLAB function once at the start of the simulation.
Separate multiple time values by a space.

For example:
matlabtb vlogtestbench_top 10 ns, 10 ms, 10 sec

The MATLAB function executes when time equals 0 and then 10
nanoseconds, 10 milliseconds, and 10 seconds from time zero.

Note For time-based parameters, you can specify any standard time
units (ns, us, and so on). If you do not specify units, the command
treats the time value as a value of HDL simulation ticks.

-repeat <time> Specifies that the HDL simulator calls the MATLAB function repeatedly
based on the specified <timen>,... pattern. The time values are
relative to the value of tnow at the time the HDL simulator first calls
the MATLAB function.

For example:
matlabtb vlogtestbench_top 5 ns -repeat 10 ns

The MATLAB function executes at time equals 0 ns, 5 ns, 15 ns, 25 ns,
and so on.

-cancel <time> Specifies a time at which the specified MATLAB function stops
executing. The time value is relative to the value of tnow at the time
the HDL simulator first calls the MATLAB function. If you do not
specify a cancel time, the application calls the MATLAB function until
you finish the simulation, quit the session, or issue a nomatlabtb call.

Note The -cancel option works only with the <time-specs>
arguments. It does not affect any of the other scheduling arguments for
matlabtb.

Note Place time specifications after the matlabtb instance and before any additional command
arguments; otherwise the time specifications are ignored.

All time specifications for the matlabtb functions appear as a number and, optionally, a time
unit:

3 Functions

3-30

• fs (femtoseconds)
• ps (picoseconds)
• ns (nanoseconds)
• us (microseconds)
• ms (milliseconds)
• sec (seconds)
• no units (tick)

-socket <tcp_spec>
Specifies TCP/IP socket communication for the link between the HDL simulator and MATLAB.
When you provide TCP/IP information for matlabtb, you can choose a TCP/IP port number or
TCP/IP port alias or service name for the <tcp_spec> parameter. If you are setting up
communication between computers, you must also specify the name or Internet address of the
remote host that is running the MATLAB server (hdldaemon).

For more information on choosing TCP/IP socket ports, see “TCP/IP Socket Ports”.

If you run the HDL simulator and MATLAB on the same computer, you have the option of using
shared memory for communication. Shared memory is the default mode of communication and
takes effect if you do not specify-socket <tcp_spec> on the command line.

Note The communication mode that you specify with the matlabtb command must match what
you specify for the communication mode when you issue the hdldaemon command in MATLAB.
For more information on modes of communication, see “Communications for HDL Cosimulation”.
For more information on establishing the MATLAB end of the communication link, see “Start the
HDL Simulator from MATLAB”.

-rising <signal>[, <signal>...]
Indicates that the application calls the specified MATLAB function on the rising edge (transition
from '0' to '1') of any of the specified signals. Specify -rising with the path names of one or
more signals defined as a logic type (STD_LOGIC, BIT, X01, and so on).

For determining signal transition in:

• VHDL: Rising edge is {0 or L} to {1 or H}.
• Verilog: Rising edge is the transition from 0 to x, z, or 1, and from x or z to 1.

Note When specifying signals with the -rising, -falling, and -sensitivity options,
specify them in full path name format. If you do not specify a full path name, the command
applies the HDL simulator rules to resolve signal specifications.

-falling <signal>[, <signal>...]
Indicates that the application calls the specified MATLAB function whenever any of the specified
signals experiences a falling edge—changes from '1' to '0'. Specify -falling with the path
names of one or more signals defined as a logic type (STD_LOGIC, BIT, X01, and so on).

For determining signal transition in:

 matlabtb

3-31

• VHDL: Falling edge is {1 or H} to {0 or L}.
• Verilog: Falling edge is the transition from 1 to x, z, or 0, and from x or z to 0.

Note When specifying signals with the -rising, -falling, and -sensitivity options,
specify them in full path name format. If you do not specify a full path name, the command
applies the HDL simulator rules to resolve signal specifications.

-sensitivity <signal>[, <signal>...]
Indicates that the application calls the specified MATLAB function whenever any of the specified
signals changes state. Specify -sensitivity with the path names of one or more signals.
Signals of any type can appear in the sensitivity list and can be positioned at any level of the HDL
design.

If you specify the option with no signals, the interface is sensitive to value changes for all signals.

Note Use of this option for INOUT ports can result in double calls.

For example:
-sensitivity /randnumgen/dout

The MATLAB function executes if the value of dout changes.

Note When specifying signals with the -rising, -falling, and -sensitivity options,
specify them in full path name format. If you do not specify a full path name, the command
applies the HDL simulator rules to resolve signal specifications.

-mfunc <name>
The name of the associated MATLAB function. If you omit this argument, matlabtb associates
the HDL module instance to a MATLAB function that has the same name as the HDL instance. If
you omit this argument and matlabtb does not find a MATLAB function with the same name, the
command generates an error message.

-use_instance_obj
Instructs the function specified with the argument -mfunc to use an HDL instance object passed
by HDL Verifier to the function. This argument has the fields shown in the following table.
See“Writing Functions Using the HDL Instance Object” for examples.

Field Read/Write
Access

Description

tnext Write only Used to schedule a callback during the set time value. This field is
equivalent to old tnext. For example:
hdl_instance_obj.tnext = hdl_instance_obj.tnow + 5e-9

will schedule a callback at time equals 5 nanoseconds from tnow.

3 Functions

3-32

Field Read/Write
Access

Description

userdata Read/Write Stores state variables of the current matlabcp instance. You can
retrieve the variables the next time the callback of this instance is
scheduled.

simstatus Read only Stores the status of the HDL simulator. The HDL Verifier software sets
this field to 'Init' during the first callback for this particular
instance and to 'Running' thereafter. simstatus is a read-only
property.

>> hdl_instance_obj.simstatus

ans=
 Init

instance Read only Stores the full path of the Verilog/VHDL instance associated with the
callback. instance is a read-only property. The value of this field
equals that of the module instance specified with the function call. For
example:

In the HDL simulator:
hdlsim> matlabcp osc_top -mfunc oscfilter use_instance_obj

In MATLAB:

>> hdl_instance_obj.instance

ans=
 osc_top

argument Read only Stores the argument set by the -argument option of matlabcp. For
example:
matlabtb osc_top -mfunc oscfilter -use_instance_obj -argument foo

The link software supports the -argument option only when it is used
with -use_instance_obj, otherwise the argument is ignored.
argument is a read-only property.

>> hdl_instance_obj.argument

ans=
 foo

portinfo Read only Stores information about the VHDL and Verilog ports associated with
this instance. portinfo is a read-only property, which has a field
structure that describes the ports defined for the associated HDL
module. For each port, the portinfo structure passes information
such as the port’s type, direction, and size. For more information on
port data, see “Gaining Access to and Applying Port Information”.
hdl_instance_obj.portinfo.field1.field2.field3

Note When you use use_instance_obj, you access tscale
through the HDL instance object. If you do not use
use_instance_obj, you can still access tscale through portinfo.

 matlabtb

3-33

Field Read/Write
Access

Description

tscale Read only Stores the resolution limit (tick) in seconds of the HDL simulator.
tscale is a read-only property.

>> hdl_instance_obj.tscale

ans=
 1.0000e-009

Note When you use use_instance_obj, you access tscale
through the HDL instance object. If you do not use
use_instance_obj, you can still access tscale through portinfo.

tnow Read only Stores the current time. tnow is a read-only property.
hdl_instance_obj.tnext = hld_instance_obj.tnow + fastestrate;

portvalues Read/Write Stores the current values of and sets new values for the output and
input ports for a matlabcp instance. For example:

>> hdl_instance_obj.portvalues

ans =
Read Only Input ports:
 clk_enable: []
 clk: []
 reset: []
Read/Write Output ports:
 sine_out: [22x1 char]

linkmode Read only Stores the status of the callback. The HDL Verifier software sets this
field to 'testbench' if the callback is associated with matlabtb and
'component' if the callback is associated with matlabcp. linkmode
is a read-only property.

>> hdl_instance_obj.linkmode

ans=
 component

-argument
Used to pass user-defined arguments from the matlabtb instantiation on the HDL side to the
MATLAB function callbacks. Supported with -use_instance_obj only. See the field listing for
argument under the -use_instance_obj property.

Examples
The following examples demonstrate some ways you might use the matlabtb function.

Using matlabtb with the -socket Argument and Time Parameters

The following command starts the HDL simulator client component of HDL Verifier, associates an
instance of the entity, myfirfilter, with the MATLAB function myfirfilter, and begins a local
TCP/IP socket-based test bench session using TCP/IP port 4449. Based on the specified test bench

3 Functions

3-34

stimuli, myfirfilter.m executes 5 nanoseconds from the current time, and then repeatedly every
10 nanoseconds:
hdlsim> matlabtb myfirfilter 5 ns -repeat 10 ns -socket 4449

Applying Rising Edge Clocks and State Changes with matlabtb

The following command starts the HDL simulator client component of HDL Verifier, and begins a
remote TCP/IP socket-based session using remote MATLAB host computer named computer123 and
TCP/IP port 4449. Based on the specified test bench stimuli, myfirfilter.m executes 10
nanoseconds from the current time, each time the signal /top/fclk experiences a rising edge, and
each time the signal /top/din changes state.
hdlsim> matlabtb /top/myfirfilter 10 ns -rising /top/fclk -sensitivity /top/din
 -socket 4449@computer123

Specifying a MATLAB Function Name and Sensitizing Signals with matlabtb

The following command starts the HDL simulator client component of the HDL Verifier software. The
'-mfunc' option specifies the MATLAB function to connect to and the '-socket' option specifies
the port number for socket connection mode. '-sensitivity' indicates that the test bench session
is sensitized to the signal sine_out.

hdlsim> matlabtb osc_top -sensitivity /osc_top/sine_out
 -socket 4448 -mfunc hosctb

Introduced in R2008a

 matlabtb

3-35

matlabtbeval
Call specified MATLAB function once and immediately on behalf of instantiated HDL module

Syntax
matlabtbeval <instance> [-socket <tcp_spec>]
[-mfunc <name>]

Description
The matlabtbeval command has the following characteristics:

• Starts the HDL simulator client component of the HDL Verifier software.
• Associates a specified instance of an HDL design created in the HDL simulator with a MATLAB

function.
• Executes the specified MATLAB function once and immediately on behalf of the specified module

instance.

This command is issued in the HDL simulator.

Note The matlabtbeval command executes the MATLAB function immediately, while matlabtb
provides several options for scheduling MATLAB function execution.

Notes The communication mode that you specify for matlabtbeval must match the communication
mode you specified for hdldaemon when you established the server connection.

For socket communications, specify the port number you selected for hdldaemon when you issue a
link request with the matlabtbeval command in the HDL simulator.

Arguments
<instance>

Specifies the instance of an HDL module that is associated with a MATLAB function. By default,
matlabtbeval associates the HDL module instance with a MATLAB function that has the same
name as the HDL module instance. For example, if the HDL module instance is myfirfilter,
matlabtbeval associates the HDL module instance with the MATLAB function myfirfilter.
Alternatively, you can specify a different MATLAB function with the -mfunc property.

-socket <tcp_spec>
Specifies TCP/IP socket communication for the link between the HDL simulator and MATLAB. For
TCP/IP socket communication on a single computer, the <tcp_spec> can consist of just a TCP/IP
port number or service name (alias). If you are setting up communication between computers,
you must also specify the name or Internet address of the remote host.

For more information on choosing TCP/IP socket ports, see “TCP/IP Socket Ports”.

3 Functions

3-36

If you run the HDL simulator and MATLAB on the same computer, you have the option of using
shared memory for communication. Shared memory is the default mode of communication and
takes effect if you do not specify -socket <tcp-spec> on the command line.

Note The communication mode that you specify with the matlabtbeval command must match
what you specify for the communication mode when you call the hdldaemon command to start
the MATLAB server. For more information on communication modes, see “Communications for
HDL Cosimulation”. For more information on establishing the MATLAB end of the communication
link, see “Start the HDL Simulator from MATLAB”.

-mfunc <name>
The name of the associated MATLAB function. If you omit this argument, matlabtbeval
associates the HDL module instance with a MATLAB function that has the same name as the HDL
module instance. If you omit this argument and matlabtbeval does not find a MATLAB function
with the same name, the command displays an error message.

Examples
This example starts the HDL simulator client component of the link software, associates an instance
of the module myfirfilter with the function myfirfilter.m, and uses a local TCP/IP socket-
based communication link to TCP/IP port 4449 to execute the function myfirfilter.m:

 hdlsim> matlabtbeval myfirfilter -socket 4449:

Introduced in R2008a

 matlabtbeval

3-37

mvl2dec
Convert multivalued logic to decimal

Syntax
D = mvl2dec(mv_logic_char)
D = mvl2dec(mv_logic_char,signed)

Description
D = mvl2dec(mv_logic_char) converts a multivalued logic to a positive decimal integer.

Note If mv_logic_char contains any character other than '0' or '1', the output returned is NaN.

D = mvl2dec(mv_logic_char,signed) converts a signed multivalued logic to a positive or
negative decimal integer.

Examples

Convert Multivalued Logic Vectors to Decimal Integers

Find the decimal integer equivalent for multivalued logic vector.

mvl2dec('010111')

ans = 23

Find the decimal integer equivalent for multivalued logic vector with one or more values other than 0
and 1. The function returns NaN.

mvl2dec('x01201')

ans = NaN

Find the decimal integer equivalent for signed multivalued logic vector. The second input argument
indicates that the input is a signed vector.

mvl2dec('10111',true)

ans = -9

Input Arguments
mv_logic_char — Multivalued logic to convert
character vector | string scalar

Multivalued logic to convert, specified as a character vector or string scalar.

3 Functions

3-38

Data Types: char | string

signed — Implementation of multivalued logic
false (0) (default) | true (1)

Implementation of the multivalued logic, specified as one of the values in this table

Value Description
true The input is a signed multivalued logic. The function assumes that the first

character mv_logic_char(1) is a signed bit of a 2's complement number.
false The input is an unsigned multivalued logic.

Data Types: logical

See Also
dec2mvl

Introduced in R2008a

 mvl2dec

3-39

nclaunch
Start and configure Cadence Incisive simulators for use with HDL Verifier software

Syntax
nclaunch('PropertyName','PropertyValue'...)

Description
nclaunch('PropertyName','PropertyValue'...) starts the Cadence Incisive simulator for use
with the MATLAB and Simulink features of the HDL Verifier software. The first folder in the Cadence
Incisive simulator matches your MATLAB current folder if you do not specify an explicit rundir
parameter.

After you call this function, you can use HDL Verifier functions for the HDL simulator (for example,
hdlsimmatlab, hdlsimulink) to do interactive debug setup.

The property name/property value pair settings allow you to customize the Tcl commands used to
start the Cadence Incisive simulator, the ncsim executable to be used, the path and name of the Tcl
script that stores the start commands, and for Simulink applications, details about the mode of
communication to be used by the applications. You must use a property name/property value pair
with nclaunch.

Name-Value Pair Arguments
hdlsimdir

Specifies the path name to the Cadence Incisive simulator executable to be started.

• pathname

Start a different version of the Cadence Incisive simulator or if the version of the simulator you
want to run does not reside on the system path.

Default: The first version of the simulator that the function finds on the system path.

hdlsimexe

Specifies the name of a Cadence Incisive simulator executable.

• simexename

Custom-built simulator executable.

Default: ncsim

libdir

This property creates an entry in the startup Tcl file that points to the folder with the shared libraries
for the Cadence Incisive simulator to communicate with MATLAB when the Cadence Incisive
simulator runs on a machine that does not have MATLAB.

3 Functions

3-40

• folder

Folder containing MATLAB shared libraries.

libfile

Specifies the library file to use for HDL simulation. If the HDL simulator links other libraries,
including SystemC libraries, that were built using a compiler supplied with the HDL simulator, you
can specify an alternate library file with this property. See “Cosimulation Libraries” for versions of
the library built using other compilers.

• library_file_name

The particular library file to use for HDL simulation.

Default: The version of the library file that was built using the same compiler that MATLAB itself
uses.

rundir

Specifies the folder containing the HDL simulator executable.

• dirname

Where to run the HDL simulator.

The following conditions apply to this name/value pair:

• If the value of dirname is “TEMPDIR”, the function creates a temporary folder in which it runs
the HDL simulator.

• If you specify dirname and the folder does not exist, you will get an error.

Default: The current working folder

runmode

Specifies how to start the HDL simulator.

• mode

This property accepts the following valid values:

• 'Batch': Start the HDL simulator in the background with no window.
• 'Batch with Xterm': Run HDL simulator in an non-interactive Xterm window.
• 'CLI': Start the HDL simulator in an interactive terminal window.
• 'GUI': Start the HDL simulator with the graphical user interface.

Default: 'GUI'

socketsimulink

Specifies TCP/IP socket communication between the Cadence Incisive simulator and Simulink. For
shared memory, omit -socket <tcp-spec> on the command line.

• tcp_spec

 nclaunch

3-41

TCP/IP port number or service name (alias)

Default: Shared memory

starthdlsim

Determines whether the Cadence Incisive simulator is launched.

This function creates a startup Tcl file which contains pointers to MATLAB and Simulink shared
libraries. To run the Cadence Incisive simulator manually, see “Start the HDL Simulator from
MATLAB”.

• yes

Launches the Cadence Incisive simulator and creates a startup Tcl file.
• no

Does not launch the Cadence Incisive simulator , but still creates a startup Tcl file.

Default: yes

startupfile

Specify the name and location of the Tcl script generated by nclaunch. The generated Tcl script,
when executed, compiles and launches the HDL simulator. You can edit and use the generated file in
a regular shell outside of MATLAB. For example:

sh> tclsh compile_and_launch.tcl

• pathname

Filename and path for generated Tcl script. If the file name already exists on the specified path,
that file's contents are overwritten.

Default: Generates a filename of compile_and_launch.tcl in the folder specified by rundir.

tclstart

Specifies one or more Tcl commands to execute before the Cadence Incisive simulator launches. You
must specify at least one command; otherwise, no action occurs.

• tcl_commands

A command character vector or a cell array of commands.

Note You must type exec in front of non-Tcl system shell commands. For example:

exec -ncverilog -64bit -c +access+rw +linedebug top.v
hdlsimulink -gui work.top

Examples

3 Functions

3-42

Start Cosimulation Session with Simulink

Compile design and start Simulink.
nclaunch('tclstart',{'exec ncverilog -64bit -c +access+rw +linedebug top.v','hdlsimulink...
 -gui work.top'},'socketsimulink','4449','rundir','/proj');

In this example, nclaunch performs the following:

• Compiles the design top.v: exec ncverilog -64bit -c +access+rw +linedebug top.v.
• Starts Simulink with the GUI from the proj folder with the model loaded: hdlsimulink -gui

work.top and 'rundir', '/proj'.
• Instructs Simulink to communicate with the HDL Verifier interface on socket port 4449:

'socketsimulink','4449'.

All of these commands are specified in a single character vector as the property value to tclstart.

Create Tcl Script to Start HDL Simulator

Create a Tcl script to start the HDL simulator from a Tcl shell using nclaunch.

Specify the name of the Tcl script and the command(s) it includes as parameters to nclaunch:
nclaunch('tclstart','xxx','startupfile','mytclscript','starthdlsim','yes')

In this example, a Tcl script is created and the command to start the HDL simulator is included. The
startup Tcl file is named "mytclscript".

Execute the script in a Tcl shell:

shell> tclsh mytclscript

This starts the HDL simulator.

Execute Multiple Tcl Commands When Launching Cosimulation Connection

Build a sequence of Tcl commands that are then executed in a Tcl shell, after calling nclaunch from
MATLAB.

Assign Tcl command values to the tclcmd parameter of nclaunch:
tclcmd{1} = 'exec ncvlog -64bit vlogtestbench_top.v'
tclcmd{2} = 'exec ncelab -64bit -access +wc vlogtestbench_top'
tclcmd{3} = ['hdlsimmatlab -gui vlogtestbench_top ' '-input "{@matlabcp...
 vlogtestbench_top.u_matlab_component -mfunc vlogmatlabc...
 -socket 32864}" ' '-input "{@run 50}"']

tclcmd =

 'exec ncvlog -64bit vlogtestbench_top.v' 'exec ncelab -64bit -access +wc vlogtestbench_top'

tclcmd =

 'exec ncvlog -64bit vlogtestbench_top.v' 'exec ncelab -64bit -access +wc vlogtestbench_top'

tclcmd =

 [1x31 char] [1x41 char] [1x145 char]

 nclaunch

3-43

• tclcmd{1} compiles vlogtestbench_top.
• tclcmd{2} elaborates the model.
• tclcmd{3} calls hdlsimmatlab in gui mode and loads the elaborated vlogtestbench_top in

the simulator.

Issue the nclaunch command, passing the tclcmd variable just set:
nclaunch('hdlsimdir','local.IUS.glnx.tools.bin','tclstart',tclcmd);

In this example, the nclaunch launches the following tasks through the Tcl commands assigned in
tclcmd:

• Executes the arguments being passed with -input (matlabtb and run) in the ncsim Tcl shell.
• Issues a call to matlabcp, which associates the function vlogmatlabc to the module instance

u_matlab_component.
• Assumes that the hdldaemon in MATLAB is listening on port 32864
• Instructs the run function to run 50 resolution units (ticks).

Introduced in R2008a

3 Functions

3-44

nomatlabtb
End active MATLAB test bench and MATLAB component sessions

Syntax
nomatlabtb

Description
The nomatlabtb command ends all active MATLAB test bench and MATLAB component sessions
that were previously initiated by matlabtb or matlabcp commands.

This command is issued in the HDL simulator.

Note This command should be called before shutting down hdldaemon or hdldaemon will block
shutdown until the call occurs.

Examples
The following command ends all MATLAB test bench and MATLAB component sessions:

hdlsim> nomatlabtb

See Also
matlabcp | matlabtb

Introduced in R2008a

 nomatlabtb

3-45

notifyMatlabServer
Send HDL simulator event ID and process ID to MATLAB server

Syntax
notifyMatlabServer eventID -socket tcp_spec

Description

Note Issue this command in the HDL simulator, not in MATLAB. It is only available after the HDL
simulator loads the MATLAB library.

notifyMatlabServer eventID -socket tcp_spec sends the HDL simulator event ID and
process identification (PID) to the MATLAB server (hdldaemon) using the specified connection
methods (socket or shared memory). For MATLAB to receive these IDs, hdldaemon must be running
with the same communication mode specified by the notifyMatlabServer function. The event ID
and the PID queue in hdldaemon. notifyMatlabServer is often used with waitForHdlClient to
make sure that the HDL simulator is ready to begin or continue processing.

Examples
Send HDL Simulator Event and Process IDs to MATLAB Server

If EventID = 5 is received within 100 seconds, the function returns the HDL simulator PID. If a
time-out occurs, the function returns –1.

>> hdldaemon('socket',5002);
...
>> hdlpid = waitForHdlClient(100,5);

In the HDL simulator, use the notifyMatlabServer command to send event ID 5 to hdldaemon
running on the same machine using TCP/IP socket port 5002.

>> notifyMatlabServer 5 -socket 5002

Input Arguments
eventID — Event ID to send to hdldaemon
1 (default) | 32-bit positive integer

Event ID to send to hdldaemon specified as a positive integer. This input argument contains the
event ID expected by the command waitForHdlClient in MATLAB.

tcp_spec — TCP/IP socket communication
TCP/IP port number | TCP/IP service name | internet address

TCP/IP socket communication for the link between the HDL simulator and MATLAB, specified as a
TCP/IP port name or service name. If the MATLAB server is running on a remote host, you must also

3 Functions

3-46

specify the name or internet address of the remote host. When this input argument is not specified,
the function uses shared memory communication.

See Also
hdldaemon | waitForHdlClient

Introduced in R2012b

 notifyMatlabServer

3-47

pingHdlSim
Block cosimulation until HDL simulator is ready

Syntax
pID = pingHdlSim(timeout)
pID = pingHdlSim(timeout,portnumber)
pID = pingHdlSim(timeout,portnumber,hostname)

Description
pID = pingHdlSim(timeout) attempts to connect to the HDL simulator using a shared
connection. The function blocks cosimulation until the HDL server loads or the specified timeout
occurs. pingHdlSim returns the process ID pID of the HDL simulator or -1 if a timeout occurs.
When you automate a cosimulation, use this function to determine if the HDL server is loaded before
your script continues the simulation.

pID = pingHdlSim(timeout,portnumber) attempts to connect to the local host on the port
portnumber.

pID = pingHdlSim(timeout,portnumber,hostname) attempts to connect to the host hostname
on port portnumber.

Examples
Block Cosimulation Until HDL Simulator Is Ready

The following function call blocks further cosimulation until the HDL server loads or 30 seconds pass.

>>pingHdlSim(30)

If the server loads within 30 seconds, pingHdlSim returns the process ID. Otherwise, pingHdlSim
returns -1.

The following function call blocks further cosimulation on port 5678 until the HDL server loads or 20
seconds pass.

>>pingHdlSim(20,'5678')

The following function call blocks further cosimulation on port 5678 on host name msuser until the
HDL server loads or 20 seconds pass:

>>pingHdlSim(20,'5678','msuser')

Input Arguments
timeout — Number of seconds to wait for response
positive scalar

Number of seconds to wait for a response from the HDL simulator, specified as a positive scalar.

3 Functions

3-48

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

portnumber — Port number to connect
character vector | string scalar

Port number to connect, specified as a character vector or string scalar. The HDL simulator attempts
to connect to a host on the specified port number.
Data Types: char | string

hostname — Name of host to connect
character vector | string scalar

Name of the host to connect, specified as a character vector or string scalar.
Data Types: char | string

See Also
breakHdlSim | hdldaemon | vsim

Topics
“Run a Simulink Cosimulation Session”

Introduced in R2008a

 pingHdlSim

3-49

programFPGA
Package: hdlverifier

Load programming file onto FPGA

Syntax
programFPGA(filobj)

Description
programFPGA(filobj) loads the FPGA through the JTAG cable, using information from the
ProgrammingFile, ScanChainPosition, and BoardName properties of the input FILSimulation
System object.

Input Arguments
filobj — Instance of FILSimulation
FILSimulation System object

Instance of FILSimulation, specified as a FILSimulation System object.

See Also
hdlverifier.FILSimulation

Topics
“FIL Simulation with HDL Workflow Advisor for MATLAB”

Introduced in R2010b

3 Functions

3-50

tclHdlSim
Execute Tcl command in Incisive or ModelSim simulator

Syntax
tclHdlSim(tclCmd)
tclHdlSim(tclCmd,portNumber)
tclHdlSim(tclCmd, portname, hostname)

Description
tclHdlSim(tclCmd) executes a Tcl command on the Incisive or ModelSim simulator using a shared
connection during a Simulink cosimulation session.

tclHdlSim(tclCmd,portNumber) executes a Tcl command on the Incisive or ModelSim simulator
by connecting to the local host on port portNumber.

tclHdlSim(tclCmd, portname, hostname) executes a Tcl command on the Incisive or
ModelSim simulator by connecting to the host hostname on port portname.

The Incisive or ModelSim simulator must be connected to MATLAB and Simulink using the HDL
Verifier software for this function to work (see either vsimulink or hdlsimulink).

You may specify any valid Tcl command. The Tcl command you specify cannot include commands that
load an HDL simulator project or modify simulator state. For example, the character vector cannot
include commands such as start, stop, or restart (for ModelSim) or run, stop, or reset (for
Incisive).

To execute a Tcl command on the Incisive or ModelSim simulator during a MATLAB cosimulation
session, use hdldaemon('tclcmd','command').

Examples
The following function call displays a message in the HDL simulator command window using port
5678 on host name msuser:

>>tclHdlSim('puts "Done"', '5678', 'msuser')

See Also
hdldaemon | nclaunch | vsim

Introduced in R2008a

 tclHdlSim

3-51

vsim
Start and configure ModelSim for use with HDL Verifier

Syntax
vsim
vsim(Name,Value)

Description
vsim starts and configures the ModelSim simulator for use with the MATLAB or Simulink
cosimulation.

vsim creates a startup (or .do) file that adds these Tcl commands to ModelSim:

• vsimmatlab: link to MATLAB from ModelSim
• vsimulink: link to Simulink from ModelSim
• vmatlabsysobj: link to MATLAB System object from ModelSim

You can use these ModelSim Tcl commands instead of the ModelSim vsim command. These
commands load instances of VHDL entities or Verilog modules for simulations that use MATLAB or
Simulink for verification.

Tip When attempting to automate the cosimulation, use pingHdlSim to add a pause between the
call to vsim and the call to run the simulation.

vsim(Name,Value) configures the ModelSim simulator using options specified by one or more
name-value pair arguments.

Examples
Start and Configure ModelSim

Change the folder location to the ModelSim project folder, and then call the vsim function using the
default executable. The function creates a temporary .do file in a temporary folder.

Specify the Tcl command vsimmatlab by using the 'tclstart' name-value pair argument. Specify
to load an instance of the VHDL entity parse in the library work for MATLAB verification.

Begin the test bench session for an instance of the entity parse by using the matlabtb command.
Specify TCP/IP socket communication on port 4449 and a test bench timing value of 10 ns.

cd VHDLproj % Change folder to ModelSim project folder
vsim('tclstart','vsimmatlab work.parse; matlabtb parse 10 ns -socket 4449')

Change the folder location to the ModelSim project folder, and then call the vsim function. Specify
the use of TCP/IP socket communication on the same computer for links between Simulink and
ModelSimby using the 'socketsimulink' name-value pair argument. Specify using socket port
4449.

3 Functions

3-52

cd VHDLproj % Change folder to ModelSim project folder
vsim('tclstart','vsimulink work.parse','socketsimulink','4449')

Input Arguments
Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: vsim('tclstart','vsimulink work.parse','socketsimulink','4449') specifies
executing the vsimulink command during startup and using port number 4449 for socket
communication between ModelSim and Simulink.

libdir — Path to HDL Verifier HDL libraries
folder name

Path to the HDL Verifier HDL libraries, specified as the comma-separated pair consisting of
'libdir' and a folder name. The folder contains the libraries that enable ModelSim to communicate
with MATLAB when ModelSim runs on a machine that does not have MATLAB installed.

If this property is not specified, the function uses the default path in the MATLAB installation.

libfile — Library file built using compiler
library file name

Library file built using a compiler supplied with the HDL simulator, specified as the comma-separated
pair consisting of 'libfile' and the library file name. The default library file is the version built
using the same compiler that MATLAB uses. If the HDL simulator links to other libraries (including
SystemC libraries) that are built using a compiler supplied with the HDL simulator, you can specify
the library file using this name-value pair argument. See “Cosimulation Libraries” for versions of the
library built using other compilers.

Note Do not include the OS-specific library extension in the library file name.

rundir — Location to run HDL simulator
folder name

Location to run the HDL simulator, specified as the comma-separated pair consisting of 'rundir'
and a folder name.

If the value is “TEMPDIR”, the function creates a temporary directory to run ModelSim. By default,
the function uses the current folder.

runmode — Run mode for HDL simulator
'GUI' (default) | 'Batch' | 'CLI'

Run mode for the HDL simulator, specified as the comma-separated pair consisting of 'runmode'
and one of the values in this table.

 vsim

3-53

Value Description
'GUI' Start the HDL simulator with the ModelSim graphical user interface.
'CLI' Start the HDL simulator in an interactive terminal window.
'Batch' Start the HDL simulator in the background with no window (Linux) or in a

noninteractive command window (Windows).

socketmatlabsysobj — TCP/IP socket communication for links between ModelSim and
MATLAB
tcp_spec

TCP/IP socket communication for links between ModelSim and MATLAB, specified as the comma-
separated pair consisting of 'socketmatlabsysobj' and a port number or service name. If you are
setting up communication between computing systems, you must also specify the internet address or
name of the remote host.

Note

• If ModelSim and MATLAB are running on the same computer, you can use shared memory for
communication.

• When this argument is not specified, the function uses shared memory communication. For more
information on choosing TCP/IP socket ports, see “TCP/IP Socket Ports”.

socketsimulink — TCP/IP socket communication for links between ModelSim and Simulink
tcp_spec

TCP/IP socket communication for links between ModelSim and Simulink, specified as the comma-
separated pair consisting of 'socketsimulink' and a port number or service name. If you are
setting up communication between computing systems, you must also specify the name or internet
address of the remote host.

Note

• If ModelSim and MATLAB are running on the same computer, you can use shared memory for
communication.

• When this argument is not specified, the function uses shared memory communication. For more
information on choosing TCP/IP socket ports, see “TCP/IP Socket Ports”.

startms — LaunchModelSim from vsim
yes (default) | no

Specify yes to create a startup Tcl file and launch ModelSim from vsim. Specify no to create a
startup Tcl file without launching ModelSim.

The startup Tcl file contains pointers to MATLAB libraries. To run ModelSim on a machine without
MATLAB, copy the startup Tcl file and MATLAB library files to the remote machine and start
ModelSim manually. See “Cosimulation Libraries”.

3 Functions

3-54

startupfile — Name and location of generated Tcl file
path name

Name and location of the generated Tcl file, specified as the comma-separated pair consisting of
'startupfile' and a path name. Each invocation of vsim creates a Tcl script that is applied
during HDL simulator startup. By default, vsim generates the file name compile_and_launch.tcl
in the folder specified by rundir. If the file name already exists, the file contents are overwritten.
You can edit and use the generated file in a regular shell outside of MATLAB. For example:

sh> vsim -gui -do compile_and_launch.tcl

tclstart — Tcl commands to execute during ModelSim startup
tcl commands

Tcl commands to execute during ModelSim startup, specified as the comma-separated pair
consisting of 'tclstart' and one of these values:

• vsimmatlab
• vsimulink
• vmatlabsysobj

The function appends these commands to the startup file.

vsimdir — Path to ModelSim executable folder
path name

Path to the ModelSim executable folder, specified as the comma-separated pair consisting of
'vsimdir' and a path name. By default, the function uses the first version of vsim.exe that it finds
on the system path (defined by the path variable).

Specify this name-value pair argument if you want to start a different version of the ModelSim
simulator, or if the version of the simulator you want to run is not on the system path.

See Also
matlabtb | vsimmatlab | vsimulink

Introduced in R2008a

 vsim

3-55

uvmbuild
Generate UVM test bench from Simulink model

Syntax
uvmbuild(dut,sequence,scoreboard)

Description
uvmbuild(dut,sequence,scoreboard) generates a SystemVerilog top module, which includes a
Universal Verification Methodology (UVM) test bench and a behavioral design under test (DUT). The
UVM test bench includes a sequence, a scoreboard, monitors, and drivers. The uvmbuild function
maps:

• The Simulink DUT subsystem to a generated SystemVerilog DPI behavioral DUT
• The Simulink sequence subsystem to a UVM sequence block
• The Simulink scoreboard subsystem to a UVM scoreboard

Examples

Use uvmbuild to generate UVM Test Bench

Simulink Model Structure

This example uses a Simulink® model, that includes these three subsystems.

• A sequence subsystem, which generates stimulus for the DUT.
• A DUT subsystem, which represents your HDL design.
• A scoreboard subsystem, which collects the outputs and checks them. In this example the DUT is a

simple delay block.

open_system('hdlv_uvmbuild');

Generate UVM Test Bench

Generate a UVM test bench from this Simulink model, specifying the paths to the DUT, sequence, and
scoreboard subsystems.

uvmbuild('hdlv_uvmbuild/DUT','hdlv_uvmbuild/Sequence','hdlv_uvmbuild/Scoreboard');

3 Functions

3-56

Starting DPI subsystem generation for UVM test bench
Starting build procedure for model: DUT
Starting SystemVerilog DPI Component Generation
Generating DPI H Wrapper C:\TEMP\Bdoc20a_1326390_10420\ibC22023\17\tp7ff79544\ex87636604\DUT_build\DUT_dpi.h
Generating DPI C Wrapper C:\TEMP\Bdoc20a_1326390_10420\ibC22023\17\tp7ff79544\ex87636604\DUT_build\DUT_dpi.c
Generating UVM module package C:\TEMP\Bdoc20a_1326390_10420\ibC22023\17\tp7ff79544\ex87636604\DUT_build\DUT_dpi_pkg.sv
Generating SystemVerilog module C:\TEMP\Bdoc20a_1326390_10420\ibC22023\17\tp7ff79544\ex87636604\DUT_build\DUT_dpi.sv
Generating makefiles for: DUT_dpi
Invoking make to build the DPI Shared Library
Successful completion of build procedure for model: DUT
Starting build procedure for model: Sequence
Starting SystemVerilog DPI Component Generation
Generating DPI H Wrapper C:\TEMP\Bdoc20a_1326390_10420\ibC22023\17\tp7ff79544\ex87636604\Sequence_build\Sequence_dpi.h
Generating DPI C Wrapper C:\TEMP\Bdoc20a_1326390_10420\ibC22023\17\tp7ff79544\ex87636604\Sequence_build\Sequence_dpi.c
Generating UVM module package C:\TEMP\Bdoc20a_1326390_10420\ibC22023\17\tp7ff79544\ex87636604\Sequence_build\Sequence_dpi_pkg.sv
Generating SystemVerilog module C:\TEMP\Bdoc20a_1326390_10420\ibC22023\17\tp7ff79544\ex87636604\Sequence_build\Sequence_dpi.sv
Generating makefiles for: Sequence_dpi
Invoking make to build the DPI Shared Library
Successful completion of build procedure for model: Sequence
Starting build procedure for model: Scoreboard
Starting SystemVerilog DPI Component Generation
Generating DPI H Wrapper C:\TEMP\Bdoc20a_1326390_10420\ibC22023\17\tp7ff79544\ex87636604\Scoreboard_build\Scoreboard_dpi.h
Generating DPI C Wrapper C:\TEMP\Bdoc20a_1326390_10420\ibC22023\17\tp7ff79544\ex87636604\Scoreboard_build\Scoreboard_dpi.c
Generating UVM module package C:\TEMP\Bdoc20a_1326390_10420\ibC22023\17\tp7ff79544\ex87636604\Scoreboard_build\Scoreboard_dpi_pkg.sv
Generating SystemVerilog module C:\TEMP\Bdoc20a_1326390_10420\ibC22023\17\tp7ff79544\ex87636604\Scoreboard_build\Scoreboard_dpi.sv
Generating makefiles for: Scoreboard_dpi
Invoking make to build the DPI Shared Library
Successful completion of build procedure for model: Scoreboard
Starting UVM test bench generation for model: hdlv_uvmbuild
Generating UVM transaction object C:/TEMP/Bdoc20a_1326390_10420/ibC22023/17/tp7ff79544/ex87636604/hdlv_uvmbuild_uvmbuild/uvm_testbench/uvm_artifacts/mw_DUT_trans.sv
Generating UVM interface C:/TEMP/Bdoc20a_1326390_10420/ibC22023/17/tp7ff79544/ex87636604/hdlv_uvmbuild_uvmbuild/uvm_testbench/uvm_artifacts/mw_DUT_if.sv
Generating UVM sequence C:/TEMP/Bdoc20a_1326390_10420/ibC22023/17/tp7ff79544/ex87636604/hdlv_uvmbuild_uvmbuild/uvm_testbench/sequence/mw_DUT_sequence.sv
Generating UVM sequence transaction C:/TEMP/Bdoc20a_1326390_10420/ibC22023/17/tp7ff79544/ex87636604/hdlv_uvmbuild_uvmbuild/uvm_testbench/sequence/mw_DUT_sequence_trans.sv
Generating UVM driver C:/TEMP/Bdoc20a_1326390_10420/ibC22023/17/tp7ff79544/ex87636604/hdlv_uvmbuild_uvmbuild/uvm_testbench/uvm_artifacts/mw_DUT_driver.sv
Generating UVM monitor C:/TEMP/Bdoc20a_1326390_10420/ibC22023/17/tp7ff79544/ex87636604/hdlv_uvmbuild_uvmbuild/uvm_testbench/uvm_artifacts/mw_DUT_monitor.sv
Generating UVM agent C:/TEMP/Bdoc20a_1326390_10420/ibC22023/17/tp7ff79544/ex87636604/hdlv_uvmbuild_uvmbuild/uvm_testbench/uvm_artifacts/mw_DUT_agent.sv
Generating UVM scoreboard C:/TEMP/Bdoc20a_1326390_10420/ibC22023/17/tp7ff79544/ex87636604/hdlv_uvmbuild_uvmbuild/uvm_testbench/scoreboard/mw_DUT_scoreboard.sv
Generating UVM environment C:/TEMP/Bdoc20a_1326390_10420/ibC22023/17/tp7ff79544/ex87636604/hdlv_uvmbuild_uvmbuild/uvm_testbench/uvm_artifacts/mw_DUT_environment.sv
Generating UVM test C:/TEMP/Bdoc20a_1326390_10420/ibC22023/17/tp7ff79544/ex87636604/hdlv_uvmbuild_uvmbuild/uvm_testbench/uvm_artifacts/mw_DUT_test.sv
Generating UVM top C:/TEMP/Bdoc20a_1326390_10420/ibC22023/17/tp7ff79544/ex87636604/hdlv_uvmbuild_uvmbuild/uvm_testbench/top/mw_DUT_top.sv
Generating UVM test package C:/TEMP/Bdoc20a_1326390_10420/ibC22023/17/tp7ff79544/ex87636604/hdlv_uvmbuild_uvmbuild/uvm_testbench/top/hdlv_uvmbuild_pkg.sv
Generating UVM test bench simulation script for Mentor Graphics QuestaSim/Modelsim C:/TEMP/Bdoc20a_1326390_10420/ibC22023/17/tp7ff79544/ex87636604/hdlv_uvmbuild_uvmbuild/uvm_testbench/top/run_tb_mq.do

Observe Generated Output

The uvmbuild function creates a directory named hdlv_uvmbuild_uvmbuild containing the
uvm_testbench directory. The uvm_testbench directory includes these subdirectories.

• The top directory includes a SystemVerilog top module and generated scripts to execute in your
HDL simulation environment.

• The DPI_dut directory contains the SystemVerilog-DPI behavioral DUT.
• The sequence directory contains the generated sequence transaction type and a UVM sequencer,

which drives the transaction to the DUT.
• The scoreboard directory contains the generated UVM scoreboard.
• The uvm_artifacts directory contains UVM components, such as monitors, drivers, and agents,

required for the UVM environment.

 uvmbuild

3-57

Run Generated UVM Test Bench

1 Start Modelsim® or Questasim in GUI mode.
2 In the HDL simulator, navigate to the top directory: cd hdlv_uvmbuild_uvmbuild

\uvm_testbench\top\
3 In the HDL simulator, enter this command to run your simulation: do run_tb_mq.do

Input Arguments
dut — Design under test subsystem
character vector | string scalar

Design under test subsystem, specified as a character vector or string scalar representing a DUT-
subsystem name or full block path.
Example: 'hdlv_uvmbuild/DUT'
Data Types: char | string

sequence — Sequence subsystem
character vector | string scalar

Sequence subsystem, specified as a character vector or string scalar representing a sequence-
subsystem name or full block path.
Example: 'hdlv_uvmbuild/sequence'
Data Types: char | string

scoreboard — Scoreboard subsystem
character vector | string scalar

Scoreboard subsystem, specified as a character vector or string scalar representing a scoreboard-
subsystem name or full block path.
Example: 'hdlv_uvmbuild/scoreboard'
Data Types: char | string

See Also
dpigen

Topics
“UVM Component Generation Overview”

Introduced in R2019b

3 Functions

3-58

vsimmatlab
Load instantiated HDL module for verification with ModelSim and MATLAB

Syntax
vsimmatlab <instance> [<vsim_args>]

Description
The vsimmatlab command loads the specified instance of an HDL module for verification and sets
up ModelSim so it can establish a communication link with MATLAB. ModelSim opens a simulation
workspace and displays a series of messages in the command window as it loads the HDL module's
packages and architectures.

This command is generally issued in the HDL simulator. It also may be run from the HDL simulator
prompt or from a Tcl script shell (tclsh).

Arguments
<instance>

Specifies the instance of an HDL module to load for verification.
<vsim_args>

Specifies one or more ModelSim vsim command arguments. For details, see the description of
vsim in the ModelSim documentation.

Examples
The following command loads the HDL module instance parse from library work for verification and
sets up ModelSim so it can establish a communication link with MATLAB:

ModelSim> vsimmatlab work.parse

Introduced in R2008a

 vsimmatlab

3-59

vsimmatlabsysobj
Load instantiated HDL module for cosimulation with ModelSim and MATLAB System object

Syntax
vsimmatlabsysobj instance
vsimmatlabsysobj instance <vsim_args>
vsimmatlabsysobj instance -socket tcp_spec

Description

Note Issue this command in ModelSim, not in MATLAB.

vsimmatlabsysobj instance loads the specified instance of the HDL design for cosimulation and
sets up ModelSim so it can establish a shared communication link with a MATLAB System object.
ModelSim opens a simulation workspace and displays a series of messages in the command window
as it loads the HDL module packages and architectures.

To generate the vsimmatlabsysobj function, you must first invoke the vsim function in MATLAB.

vsimmatlabsysobj instance <vsim_args> uses additional vsim command line arguments.

vsimmatlabsysobj instance -socket tcp_spec establishes communication link with a
MATLAB System object over a TCP socket.

Examples
Load Instantiated HDL Model for Cosimulation with MATLAB System object

In ModelSim, load the HDL module instance parse from the library work, and establish
communication with MATLAB System object.

ModelSim> vsimmatlabsysobj work.parse

Input Arguments
instance — Instance of HDL module to load for cosimulation
HDL instance name, as required by ModelSim

Instance of the HDL module to load for cosimulation.

vsim_args — vsim command arguments
vsim command arguments

vsim command arguments, as required by ModelSim. For details, see the description of vsim in the
ModelSim documentation.

3 Functions

3-60

tcp_spec — TCP/IP socket communication
TCP/IP port number | TCP/IP service name | internet address

TCP/IP socket communication for the link between ModelSim and MATLAB, specified as a TCP/IP port
name or service name. If the MATLAB server is running on a remote host, you must also specify the
name or internet address of the remote host. When this input argument is not specified, the function
uses shared memory communication. This setting overrides the setting specified with the MATLAB
vsim function.

See Also
vsim | vsimmatlab

Introduced in R2012b

 vsimmatlabsysobj

3-61

vsimulink
Load instantiated HDL module for cosimulation with ModelSim and Simulink

Syntax
vsimulink instance -socket tcp_spec <vsim_args>

Description

Note Issue this command in ModelSim, not in MATLAB.

vsimulink instance -socket tcp_spec <vsim_args> loads the specified instance of the HDL
design for cosimulation and sets up ModelSim so it can establish a shared communication link with
Simulink. ModelSim opens a simulation workspace and displays a series of messages in the command
window as it loads the HDL module packages and architectures.

To generate the vsimulink function, you must first invoke the vsim function in MATLAB.

Examples
Load Instantiated HDL Model for Cosimulation with Simulink

In ModelSim, load the HDL module instance parse from the library work, and establish
communication with Simulink.

ModelSim> vsimulink work.parse

Input Arguments
instance — Instance of HDL module to load for cosimulation
HDL instance name, as required by ModelSim

Instance of the HDL module to load for cosimulation.

vsim_args — vsim command arguments
vsim command arguments

vsim command arguments, as required by ModelSim. For details, see the description of vsim in the
ModelSim documentation.

tcp_spec — TCP/IP socket communication
TCP/IP port number | TCP/IP service name | internet address

TCP/IP socket communication for the link between ModelSim and Simulink, specified as a TCP/IP port
name or service name. If the MATLAB server is running on a remote host, you must also specify the
name or internet address of the remote host. When this input argument is not specified, the function
uses shared memory communication. This setting overrides the setting specified with the MATLAB
vsim function.

3 Functions

3-62

See Also
vsim

Introduced in R2008a

 vsimulink

3-63

waitForHdlClient
Wait until specified event ID is obtained or time-out occurs

Syntax
pID = waitForHdlClient(timeout,eventID)
pID = waitForHdlClient(timeout)
pID = waitForHdlClient

Description
pID = waitForHdlClient(timeout,eventID) waits for the expected HDL simulator eventID to
arrive at the MATLAB server before processing continues. If the expected eventID arrives before the
number of seconds specified by timeOut the value returned by the HDL simulator is the HDL
simulator process ID (PID).

pID = waitForHdlClient(timeout) waits for eventID = 1 for timeOut seconds.

pID = waitForHdlClient waits for eventID = 1 for 60 seconds.

Examples
Wait Until Specified Event ID Is Obtained or Time-Out Occurs

Wait for event ID 2 for 120 seconds.

>> ID = waitForHdlClient(120,2);

Input Arguments
timeout — Number of seconds to wait for response
positive scalar

Number of seconds to wait for a response from the HDL simulator, specified as a positive scalar.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

eventID — Event ID expected at MATLAB server
scalar | vector

Event ID expected at the MATLAB server, specified as a scalar or vector. eventID must be a positive
number less than the maximum value of a 32-bit signed integer. The value must match the event ID
sent by the notifyMatlabServer command in the HDL simulator.

When specified as a vector the function returns a value when all the elements of the vector have been
collected or a time-out occurs. The returned output value is the same size as eventID, and each
element of the output variable is the detected pID of the HDL simulator that corresponds to the event
ID.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

3 Functions

3-64

Output Arguments
pID — Process ID of HDL simulator
scalar | vector

Process ID of the HDL simulator, returned as a scalar or a vector. If a time-out occurs, the pID is
returned as -1. The output value depends on the value of eventID.

eventID pID
scalar The function returns a scalar representing the detected PID of the HDL

simulator.
vector The function returns a vector the same size as eventID. Each element in

the output vector is the detected PID of the HDL simulator. The output is
returned only if all elements of the vector are collected or if a time-out
occurs.

See Also
hdldaemon | notifyMatlabServer

Introduced in R2012b

 waitForHdlClient

3-65

	Blocks
	Assertion
	FIL Simulation
	HDL Cosimulation
	To VCD File

	System Objects
	hdlverifier.FILSimulation
	hdlverifier.HDLCosimulation

	Functions
	breakHdlSim
	Cosimulation Wizard
	dec2mvl
	dpigen
	FPGA-in-the-Loop Wizard
	hdldaemon
	hdlsimmatlab
	hdlsimmatlabsysobj
	hdlsimulink
	matlabcp
	matlabtb
	matlabtbeval
	mvl2dec
	nclaunch
	nomatlabtb
	notifyMatlabServer
	pingHdlSim
	programFPGA
	tclHdlSim
	vsim
	uvmbuild
	vsimmatlab
	vsimmatlabsysobj
	vsimulink
	waitForHdlClient

